

Clean Energy Communities Energy Study

Prepared for:

Town of Groton - Municipal Building 101 Conger Boulevard Groton, NY 13073

Audit No: CEC001236-1-S

Submitted by:

L&S Energy Services 58 Clifton Country Road, Suite 203 Clifton Park, NY 12065

Date: 3/17/2025

For questions regarding this report, please contact <u>CEC@nyserda.ny.gov</u>.

We hope the findings of this report will assist you in making decisions about energy efficiency improvements in your facility. Thank you for your participation in this program.

NOTICE

This report was prepared pursuant to the Flexible Technical Assistance Program (Hereinafter "FlexTech") administered by the New York State Energy Research and Development Authority (hereinafter "NYSERDA"). The opinions expressed in this report do not necessarily reflect those of NYSERDA or the State of New York, and reference to any specific product, service, process, or method does not constitute an implied or expressed recommendation or endorsement of it by NYSERDA or the State of New York. Further, NYSERDA and the State of New York make no warranties or representations, expressed or implied, as to the fitness for a particular purpose or merchantability of any product, apparatus, or service, or the usefulness, completeness, or accuracy of any processes, methods, energy savings, or other information contained, described, disclosed, or referred to in this report. NYSERDA and the State of New York make no representation that the use of any product, apparatus, process, method, or other information will not infringe privately-owned rights and will assume no responsibility for any loss, injury, or damage resulting from, or occurring in connection with, the use of information contained, described, disclosed, disclosed, or referred to in this report.

State of New York

Kathy Hochul, Governor

New York State Energy Research and Development Authority

Consultant Disclaimer

The opinions expressed in this report do not necessarily reflect those of L&S Energy Services, C.J. Brown Energy P.C., The Daylight Savings Company, or Taitem Engineering P.C. (the Consultants), and reference to any specific product, service, process, or method does not constitute an implied or expressed recommendation or endorsement of it by the Consultants. Further, the Consultants make no warranties or representations, expressed or implied, as to the fitness for a particular purpose or merchantability of any product, apparatus, or service, or the usefulness, completeness, or accuracy of any processes, methods, energy savings, or other information contained, described, disclosed, or referred to in this report. The Consultants make no representation that the use of any product, apparatus, process, method, or other information will not infringe privately-owned rights and will assume no responsibility for any loss, injury, or damage resulting from, or occurring in connection with, the use of information contained, described, disclosed, or referred to in this report.

This report was prepared by:

L & S Energy Services 58 Clifton Country Road, Suite 203 Clifton Park, NY 12065 (518) 383-9405

Table of Contents

Executive Summary	. 1
Present Energy Use and Cost Benchmarking Your Building Project Summary Table	3
Note on Energy Project Implementation Costs Greenhouse Gas Reductions for the Recommended Measures	5 6
Existing Conditions	
Lighting Systems Heating Ventilating and Air Conditioning Systems Water Heating System Other Energy-using Systems	7 9
Energy Efficiency Measure Descriptions	.10
EEM-1 Interior Lighting Retrofit EEM-2 Improve Temperature Control	
EEM-3 Weather-Stripping And Caulking	
EEM-4 Insulate Building Envelope - Garage EEM-5 Insulate Building Envelope - Town Office	
EEM-6 Install Insulated Doors	
EEM-7 Install Double Glazing	
EEM-8 Insulate Heating And Domestic Hot Water Pipes	
EEM-9 Install A Tankless Water Heater Building Electrification Measures	
BE-1 Install Clean Heating System - Air Source Heat Pump	
BE-2 Install Clean Heating System - Ground Source Heat Pump	
Appendix A	
Equipment Inventory Appendix B	
Energy Use and Cost Summary	
Utility Bill Data	
Appendix C	
EEM Calculations	.26
Appendix D	.38
Assumptions/Data Used to Develop Energy and Dollar Savings Figures Appendix E	
Clean Heating and Cooling Technology Overview Appendix F	
Energy Savings Summaries	.45

Executive Summary

In consideration of NYSERDA's objectives, the primary focus of this Energy Study is the evaluation of energy efficient electric building technologies. Limited opportunities that reduce fossil fuel use may be considered, however, the evaluation of new systems and equipment that utilize fossil fuels is excluded from the analysis contained herein and as such will not be recommended as energy efficiency improvements. The replacement of systems and equipment that utilize fossil fuels are not eligible for Clean Energy Communities Funding.

Specific areas of concern that were identified by the owner for evaluation include HVAC controls, lighting, and envelope.

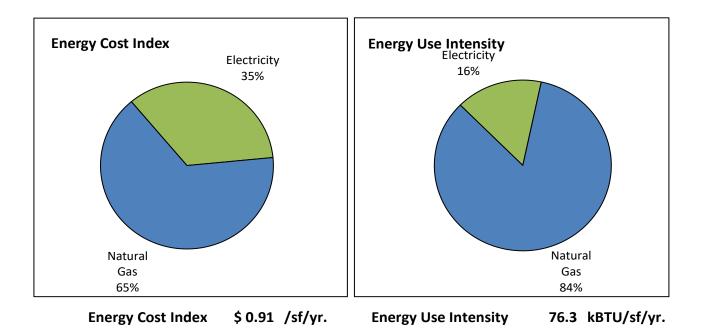
The following energy efficiency measures (EEMs) and observations to reduce energy use were identified during the site visit:

- Lighting Replace all the fluorescent lights with LEDs.
- Controls Install Wi-Fi enabled thermostats so that the facility manager has remote control of the building heating and cooling zones.
- Envelope
 - The overhead garage doors need new weatherstripping and door sweeps.
 - The garage walls and ceiling should be fully insulated with spray foam.
 - The Town Offices should have insulation above the dropped ceiling.
 - The front and rear door in the mechanic's bay need to be replaced.
 - The paint room single pane windows need to be replaced.
- Pipes Insulate the hot water heating and domestic hot water pipes in the boiler room.
- Domestic Hot Water Replace the gas fired storage tank for a small, on demand electric unit.
- Heat Pumps Install air source or ground source heat pumps in for the Court/Offices section of the building.

These Energy Efficiency Measures are summarized in the Project Summary Table below and discussed in more detail in the Energy Efficiency Measures section of this report.

Present Energy Use and Cost

The energy use for your facility has been compiled to calculate the Energy Cost Index and the Energy Use Intensity.


- The Energy Cost Index (ECI) is the total cost of energy divided by the conditioned floor area and is shown as dollars per square foot per year.
- The Energy Use Intensity (EUI) is the total heat content of energy divided by the conditioned floor area and is shown in units of one thousand Btus (kBtu) per square foot per year.

Energy Cost Index

Electricity	\$ 7,221	\$ 0.31	\$/sq.ft./year
Natural Gas	\$ 13,664	\$ 0.59	\$/sq.ft./year
Total Cost	\$ 20,885	\$ 0.91	\$/sq.ft./year

Energy Use Intensity

Electricity	278	mmBtu	12.1	kBtu/sq.ft./year
Natural Gas	1,476	mmBtu	64.2	kBtu/sq.ft./year
Total Energy Use	1,754	mmBtu	76.3	kBtu/sq.ft./year

Benchmarking Your Building

The EPA's ENERGY STAR Portfolio Manager website allows you to upload energy use information and compare your energy use to that of other buildings of similar use. Portfolio Manager generates a benchmark score that indicates your performance. A benchmark score of 50 indicates average performance while a score of 75 or higher would earn the Energy Star designation. You can use the website to track your energy use over time and document the success of your energy conservation efforts.

You can find the Portfolio Manager at:

https://www.energystar.gov/buildings/facility-owners-and-managers/existingbuildings/use-portfolio-manager

Project Summary Table

	Energy Efficiency Measures			\$ Savings & Cost			
EEM #	Measure Status	EEM Description	Reduction in Greenhouse Gas Emissions (Lbs. CO2e/Year)	Total Annual Savings	Install Costs	Simple Payback (years)	
EEM-1	R	Interior Lighting Retrofit	16,630	\$ 1,276	\$ 17,632	13.8	
EEM-2	R	Improve Temperature Control	21,756	\$ 1,680	\$ 787	0.5	
EEM-3	R	Weather-Stripping And Caulking	7,212	\$ 557	\$ 3,072	5.5	
EEM-4	R	Insulate Building Envelope - Garage	35,995	\$ 2,779	\$ 74,906	26.9	
EEM-5	R	Insulate Building Envelope - Town Office	3,242	\$ 250	\$ 7,500	30.0	
EEM-6	NR	Install Insulated Doors	584	\$ 45	\$ 1,905	42.2	
EEM-7	NR	Install Double Glazing	5,561	\$ 421	\$ 23,040	54.7	
EEM-8	R	Insulate Heating And Domestic Hot Water Pipes	245	\$ 19	\$ 145	7.7	
EEM-9	NR	Install A Tankless Water Heater	(22)	(\$ 2)	\$ 450	(287.2)	
		All Energy Efficiency Measures:	91,202	\$ 7,026	\$ 129,437	18.4	
		Total of Recommended Measures:	85,079	\$ 6,561	\$ 104,042	15.9	

Measure Status Explanation:

(I) - Implemented: Measure has been installed

(R) - Recommended: Energy saved with a reasonable payback (within measure life)

(NR) - Not Recommended: When payback exceeds measure life and equipment is not at end of life

(RME) - Recommended Mutually Exclusive: Energy is saved and recommended over other options for a particular measure

(ME) - Mutually Exclusive: Non-recommended option(s) to a Recommended Mutually Exclusive (RME) measure

(RNE) - Recommended Non-Energy: Recommended based on other, non-energy factors such as comfort, water savings or equipment at end of life

(RS) - Recommended for Further Study: For measures that require analysis beyond the scope of this program.

(RBE) – Recommended Beneficial Electrification: Measures that should be considered based on greenhouse gas reductions, eliminating on-site use of fossil fuels, and/or other sustainability factors

Building Electrification Measures		\$ Savings & Cost						
EEM #	Measure Status	Building Electrification Measure Descriptions	Reduction in Greenhouse Gas Emissions (Lbs. CO2e/Year)	Total Annual Savings	Install Costs	Simple Payback (years)	Estimated Incentives	Simple Payback after incentives
BE-1	RRF	Install Clean Heating System - Air Source Heat Pump	6,364	\$ 500	\$ 52,753	105.5	\$ 10,658	84.2
BE-2		Install Clean Heating System - Ground Source Heat Pump	14,140	\$ 1,096	\$ 136,683	124.7	\$ 12,093	113.6
	-	All Measures:	20,503	\$ 1,596	\$ 189,436	118.7	\$ 22,751	104.4
		Total of Recommended Measures:	0	\$ 0	\$ 0		\$0	

Simple Payback Period is the length of time it will take to recover the initial capital investment from the energy savings of the new equipment. The Simple Payback Period is calculated by dividing the initial installed cost by the annual energy cost savings. For example, an energy-saving measure that costs \$5,000 and saves \$2,500 per year has a Simple Payback Period of \$5,000 divided by \$2,500 or 2 years.

Note on Energy Project Implementation Costs

The "Project Costs" shown in this report for each Energy Efficiency Measure represent an initial estimate of the implementation cost. Unless otherwise noted in the Energy Efficiency Measure description, these costs reflect a preliminary estimate of material and labor. There may be other variables associated with your specific project that will impact the true project costs that the study may not capture. Other external factors that may impact true project costs and payback include material availability, vendor scheduling, access within the facility, general inflation, available measure incentives, and other unknown factors and conditions. For measures which significantly impact your building's usage, it is also important to determine any potential utility rate and/or tariff changes, those of which are beyond the scope of this report. We recommend that you seek several quotes from qualified vendors prior to implementation.

Greenhouse Gas Reductions for the Recommended Measures

Reducing your energy use will reduce the release of greenhouse gases associated with the use of fossil fuels and the production of electricity. If the measures recommended in this report are implemented, the following reductions of greenhouse gases can be expected:

Electricity				
Liooniony	14,356	kWh =	16,653	pounds CO2 equivalent
Natural Gas	5,838	therm =	68,426	pounds CO2 equivalent
			85,079	pounds CO2 equivalent
			31.8%	reduction

Emissions factors are used to translate the energy savings data from energy efficiency and renewable generation projects into annual GHG emissions reduction values. NYSERDA uses emission factors derived from U.S. Environmental Protection Agency (EPA) emission coefficients to calculate emissions from onsite fuel. The CO2e values represent aggregate CO2, CH4, and N2O emissions.

Existing Conditions

The site is a municipal complex comprising three different sections between two connected buildings. The original building from 1961 consists of the Town Office, which hosts the Clerk and other departments, as well as the highway garage. The newer section, constructed in 1990, was built for the Town Court. There are five full-time staff who work in the Office from 8am to 4pm on weekdays. The Court has a single clerk who works from 7am to 4pm Monday through Thursday. Court is in session on Mondays at 5pm. The highway department has nine staff, who work from 6am to 3pm Monday through Thursday and 6am to 12pm on Fridays in the winter (as well as overtime). During the summer, they work from 6am to 4pm Monday through Thursday. The highway staff are usually out of the building.

The Court space consists of 3,480 ft² per drawings that were available. It is a block and brick building that has 20' walls and a flat roof with a grey EPDM membrane. According to the drawings there are 3" of rigid board insulation above metal deck at R-38 levels. The interior walls in the Court are framed and likely insulated. The rear storage space of the building is neither framed, nor insulated. There are two entrances, each with heated vestibules that have double pane glass doors with metal frames. The Court also has a side entrance with a fire rated metal door. The windows are all double pane glass with metal frames and are either fixed or have pull handles.

The Town Office is part of the original building structure, which is a poured concrete building. This section has standard 10' walls, and a gabled roof with a corrugated metal exterior and a dropped ceiling. There is unlikely to be insulation along the ceiling or interior walls. The highway garage is a concrete framed building with block side and rear walls at 15'. The concrete roof is inverted, and the drains feed directly into the sewer line. There does not appear to be any insulation in this section of the building. The front and rear walls consist primarily of insulated 14'x18' overhead garage doors. The side wall has two large single pane glass metal framed windows. One has plastic sheathing over it. The rear wall used to have single pane windows, but these were boarded up and replaced with smaller double pane glass windows. The entrances are fire rated metal doors. This section is around 19,520 ft².

Lighting Systems

The lights in the Court are a combination of T8, T12, and compact fluorescent fixtures. The offices in the original building have T8 fluorescent fixtures. The garage has T5 highbay fixtures in all bays except for the paint room, which has LED fixtures. These lights all operate via switches. The exterior lights are all LED with photocells.

Heating Ventilating and Air Conditioning Systems

The Court and Office have two different heating systems. The boiler plant heats via baseboard heat along the perimeter, while gas fired packaged rooftop units heat and cool the space. Staff state that the rooftop units operate primarily in the shoulder periods before the boiler plant comes on to heat. It was observed that the rooftop unit was set to cooling,

despite the boiler being on, which indicates that the staff often are fighting to keep the building comfortable, and even simultaneously heating and cooling the space. The juror room has an electric heater and a dehumidifier which are on to protect files from potential damage. Note that the Courtroom is almost exclusively unoccupied.

The Town Office uses the boiler and its rooftop unit to heat and cool, while the highway garage office has a PTAC for cooling with a hot water coil tied into the boiler for heating. The garage breakroom and bathroom are heated exclusively by the boiler, as well as the furthest garage bay, which is the paint room. The paint room cannot have an open flame, so unit ventilators are supplied by the boiler. The rest of the garage bays use ceiling mounted gas fired unit heaters. They recently installed destratification fans, which allows the staff to reduce the thermostat setpoints.

- Boiler
 - Weil McLain, model LGB-2 cast iron six sectional gas fired boiler from 2024.
 - 650 Mbh capacity and a rated efficiency of 80.7%.
 - Most pipes are insulated.
 - Three zones with Grundfos 215 W circulator pumps.
 - Court/Office Digital thermostat in kitchen area is set to 75 degrees
 - Highway Digital thermostat installed in 2024 in the breakroom is set to 65 degrees
 - Paint Room Slider thermostat set to 50 degrees.
 - The thermostats used to be pneumatic but were converted to digital with the new zones/boiler.
- Rooftop Units
 - o Carrier, models 48TCED08 units. One from 2012 and one from 2014.
 - Two stage cooling at 7.5 Ton with an 11 EER and 11.7 IEER.
 - 180 Mbh heating capacity at 82% efficiency.
 - Units appear to have outside air intakes, but per model number description there is no damper.
 - The Court programmable thermostat was set to cool to 73 degrees (which may simultaneously heat and cool the space). Typical heating setpoint are 70 degrees with a 5 degree setback.
 - The Town Office programmable thermostat is set to hold to 74 degrees in heating and 77 degrees in cooling.
- Electric Baseboard
 - $_{\odot}$ The juror room is kept heated with a 6' baseboard to 75 degrees.
- Unit Heaters
 - The highway garage has eight total Reznor unit heaters.
 - Two in the mechanic's bay are 140 Mbh with a rated efficiency of 77% from 1984.
 - The other six are in the main garage, and these are estimated to have 200 Mbh capacity.
 - Four are older, likely from 1984 with 77% efficiencies.
 - Two are new, likely from 2023 with 82% efficiencies.
 - Each has their own rotary dial thermostats that staff keep between 55 and 60 degrees.

Water Heating System

Hot water is provided by an A.O. Smith, model FCG-75-300 gas fired hot water storage heater from 2014. It has capacities of 75 Mbh and 75 gallons. The combustion efficiency is 80%. The pipes are not insulated, and the hot water temperature was not able to be measured as the pipe run took a long time to get to the Clerk's bathroom. Staff state that the only use is for handwashing.

Other Energy-using Systems

Other than office equipment and kitchen appliances, the highway garage has an air compressor, and other process equipment.

See Appendix D for further details regarding the energy calculations performed for this study.

Energy Efficiency Measure Descriptions

EEM-1 Interior Lighting Retrofit

Electric Savings:	\$ 1,276	14,336 7.6	kWh per year kW demand
Fuel Savings:	\$ O	0.0	MMBtu fuel per year
Total Annual Savings: Project Cost: Simple Payback:	\$ 1,276 \$ 17,632 13.8	years	

Introduction:

Lighting usually represents a major portion of a facility's electricity use, and given the continuous hours of use, it contributes to the peak electric demand each month. Taking steps to improve the efficiency of your lighting will reduce both the total electric energy used and lower your peak electric demand. Lighting retrofit projects now consist of installing Light Emitting Diode, or LED, light sources in all fixtures. Some fixtures, such as indoor fluorescent fixtures, can be retrofitted to use T-8 replacement lamps, but most fixtures should simply be replaced with LED fixtures. Energy savings of 50% are common when replacing fluorescent and HID light sources with LED sources.

LED light sources for interior applications should list their color on the label; this is expressed in degrees Kelvin, or °K. Lights with higher values will be more blue in color and may not be appropriate for indoor use. Look for values between 3500 and 4000°K for "cool white" light. For spaces where a warmer color of light is desired, select lights with values between 2700 and 3000°K.

Recommendation:

There are several different types of fluorescent fixtures consisting of T5, T8, and T12 tubes of various lengths. Replace the office lights with flat panel LEDs. Replace the high bay lights with new LED tubes. Install occupancy sensors in the offices, breakrooms, bathrooms, and highway garage.

LED lamps and fixtures should be Energy Star labeled or listed with the Design Lights Consortium (DLC). Your utility incentive program may have other requirements that must be met in order to qualify for incentives.

EEM-2 Improve Temperature Control

Electric Savings:	\$0	0 0.0	kWh per year kW demand
Fuel Savings:	\$ 1,680	185.6	MMBtu fuel per year Natural Gas
Total Annual Savings:	\$ 1,680		
Project Cost:	\$ 787		
Simple Payback:	0.5	years	

Introduction:

Proper temperature control is important in order to minimize energy costs. Maintaining space temperatures within a reasonable range during occupied periods and reliably reducing the amount of heating and cooling energy during unoccupied periods should be the goal for your temperature control system.

Facilities that are occupied only on weekdays can maintain a lower space temperature setpoint on weekends. Programmable thermostats are available that permit full 7 day schedules to be defined. 5-2 or 5-1-1 thermostats use the same schedule for all weekdays and provide one or two schedules for weekend days.

Recommendation:

The boiler plant has two thermostats serving the entire court/office complex with one installed in the kitchen, and the other installed in the breakroom. There are also two rooftop unit thermostats located in the court and clerk's office. The facility manager indicates that staff adjust the temperatures as they please in different areas to address different comfort levels. However, this leads to simultaneous heating and cooling in the court.

New Wi-Fi enabled thermostats need to be installed to replace the four thermostats so that the facility manager can control the temperatures during occupied times and set programs up for unoccupied times. For instance, the court is unoccupied most of the week, and the staff should not be using the rooftop units for heating (or cooling) in the winter unless the boiler is offline. This measure provides an estimate of savings for introducing a night setback of 5 degrees in the heating season. Contact the mechanical contractor to inquire about adding more zones and thermostats, which will limit imbalances within the system.

EEM-3 Weather-Stripping And Caulking

Electric Savings:	\$ O	0 0.0	kWh per year kW demand
Fuel Savings:	\$ 557	61.5	MMBtu fuel per year Natural Gas
Total Annual Savings:	\$ 557		
Project Cost:	\$ 3,072		
Simple Payback:	5.5	years	

Introduction:

Sealing the cracks between windows and wall openings will reduce the amount of unwanted outside air infiltration into conditioned spaces. The elimination of infiltration or drafts makes occupants feel more comfortable and reduces heating and cooling costs. Caulking and weather-stripping are cost effective ways to reduce infiltration and to tighten the building envelope.

All windows and doors must be caulked and weather-stripped. Clean and inspect surfaces for damage or moisture, in order to ensure that they are in good enough condition to accept weather-stripping or caulk. Tighten door or window hardware. Remove old weather-stripping and caulk. Cut weather-stripping carefully to length and apply it to the surface. New weather-stripping should be snug, and should completely fill gaps without buckling or otherwise deforming. Open and close window or door and inspect for interference, weather-stripping damage, or other problems. Windows and doors should be able to close without excessive force.

Recommendation:

The overhead garage doors need new weatherstripping and door sweeps.

EEM-4 Insulate Building Envelope - Garage

Electric Savings:	\$ O	0 0.0	kWh per year kW demand
Fuel Savings:	\$ 2,779	307.1	MMBtu fuel per year Natural Gas
Total Annual Savings:	\$ 2,779		
Project Cost:	\$ 74,906		
Simple Payback:	26.9	years	

Introduction:

Heat moves from areas of high temperature to areas of low temperature. As the temperature difference between a heated and an unheated space becomes greater, so does the rate of heat transfer. Insulation reduces the rate of heat transfer by filling the space with material that is less conductive than what is currently there. The effectiveness of insulation is measured by R-value, which is the resistance to heat transfer. As the R-value increases, the rate at which heat is transferred decreases.

Insulation can be installed in enclosed spaces, such as wall cavities, cathedral ceiling cavities, and floored attic cavities. It can also be installed in unfloored attics, which can accommodate greater thickness resulting in higher R-value. When insulation is combined with air sealing, convective air currents that circulate air within cavities and through insulation are reduced, which increases the effective R-value of the insulation.

Recommendation:

The garage should be insulated with spray foam along the walls and ceiling. Also spray foam the walls between the overhead doors and the rear areas below the windows. Savings are estimated for adding at least 2" of spray foam on the walls and 4" on the ceiling. A fire retardant paint or similar coating may need to be added to the spray foam depending on local codes. Costs are estimated at \$1/inch/ft² of spray foam.

EEM-5 Insulate Building Envelope - Town Office

Electric Savings:	\$ 2	20 0.0	1 7
Fuel Savings:	\$ 249	27.5	MMBtu fuel per year Natural Gas
Total Annual Savings:	\$ 250		
Project Cost:	\$ 7,500		
Simple Payback:	30.0	years	

Introduction:

Heat moves from areas of high temperature to areas of low temperature. As the temperature difference between a heated and an unheated space becomes greater, so does the rate of heat transfer. Insulation reduces the rate of heat transfer by filling the space with material that is less conductive than what is currently there. The effectiveness of insulation is measured by R-value, which is the resistance to heat transfer. As the R-value increases, the rate at which heat is transferred decreases.

Insulation can be installed in enclosed spaces, such as wall cavities, cathedral ceiling cavities, and floored attic cavities. It can also be installed in unfloored attics, which can accommodate greater thickness resulting in higher R-value. When insulation is combined with air sealing, convective air currents that circulate air within cavities and through insulation are reduced, which increases the effective R-value of the insulation.

Recommendation:

The Town Office should install fiberglass or equivalent insulation above the drop ceiling. Savings are estimated for adding 4" of R-19 insulation at a cost of \$3/ft².

EEM-6 Install Insulated Doors

Electric Savings:	\$0		0 0.0	kWh per year kW demand
Fuel Savings:	\$ 45		5.0	MMBtu fuel per year Natural Gas
Total Annual Savings:	\$ 45			
Project Cost:	\$ 1,905			
Simple Payback:	42.2	years		

Introduction:

Single pane wooden frame or metal frame doors can be very inefficient. Heat loss due to conduction through single pane glass can be very high. Also heat loss due to air infiltration past loose fitting or worn out frames can increase the cost of energy to heat this air. Drafts can also occur causing discomfort to occupants. The installation of insulated replacement doors will reduce these heating loads.

Energy efficient doors are built with thermal breaks and insulated cores to reduce conduction heat losses. Weather stripping along the perimeter of the door minimizes the infiltration of unconditioned air.

Recommendation:

The metal entrance doors in the front and rear of the garage have reached the end of their useful lives and need to be replaced. Unfortunately, since this space is not heated like a typical office, the potential savings from an energy efficiency standpoint do not have a good payback relative to the cost for high efficiency doors. However, since they need to be replaced, this measured is recommended for non-energy reasons.

EEM-7 Install Double Glazing

Electric Savings:	(\$ 8)	0 0.0	kWh per year kW demand
Fuel Savings:	\$ 429	47.4	MMBtu fuel per year Natural Gas
Total Annual Savings:	\$ 42 1		
Project Cost:	\$ 23,040		
Simple Payback:	54.7	years	

Introduction:

Single pane wooden or metal frame windows can be very inefficient. Heat loss due to conduction through single pane windows can be very high. New windows utilize two panes of glass instead of one. Glass performance is measured in two ways Solar Heat Gain Co-efficient (SHGC) or Visible Transmittance (VT). SHGC is the amount of solar gain transmitted through a window into the building. VT refers to the amount of visible light that moves through the glass from exterior to interior. These two factors can be altered for a higher performing window by adding Low-E coatings and spacers with gas. The overall thermal performance of windows is generally assigned a u-value. This measurement considers all parts of a window. These parts include the frame, sash, and glass. The installation of windows with double glazing will reduce infiltration and conduction losses.

Recommendation:

The paint shop windows are single pane glass and need to be replaced with similar windows in the rear of the garage. However, further consideration should be given to removing the windows altogether and installing block and spray foam over the holes.

Savings are based on installing new double pane windows, but since they will be prohibitively expensive, this measure is not recommended.

EEM-8 Insulate Heating And Domestic Hot Water Pipes

Electric Savings:	\$ O	0 0.0	kWh per year kW demand
Fuel Savings:	\$ 19	2.1	MMBtu fuel per year Natural Gas
Total Annual Savings:	\$ 19		
Project Cost:	\$ 145		
Simple Payback:	7.7 year	S	

Introduction:

Heat is distributed through the building by pipes containing hot water or steam. Heating distribution system pipes lose heat to the surrounding space. If the heat is lost to an area that does not require heating, the drop in system efficiency can be significant. Un-insulated pipes in conditioned space may also overheat the space, wasting energy and causing comfort problems. All heating distribution system pipes located in unconditioned space should be insulated.

Domestic hot water (DHW) is water that is heated for hand washing, showering, dish washing, laundry, etc. Domestic hot water pipes lose heat to the surrounding space. This loss is significant in facilities with recirculating hot water systems, or in facilities that use hot water for a large portion of the day. In a recirculating system, all domestic hot water pipes should be insulated. In a non-recirculating system, domestic hot water pipes within eight feet of the water heater should be insulated.

Recommendation:

Insulate all exposed heating pipes that are located in unconditioned space. Insulate the first eight feet of domestic hot water piping after the water heater. Insulation thickness should be per the New York State Energy Conservation Construction Code, and should be pre-formed fiberglass pipe insulation with protective jacketing.

Install 1 in. insulation on (12 ft.) of 1 in. Dull Copper Hot Water pipe and 1 in. insulation on (8 ft.) of 0.75 in. Dull Copper DHW pipe.

EEM-9 Install A Tankless Water Heater

Electric Savings:	(\$ 26)	(294) (0.1)	kWh per year kW demand
Fuel Savings:	\$ 25	2.7	MMBtu fuel per year Natural Gas
Total Annual Savings:	(\$ 2)		
Project Cost:	\$ 450		
Simple Payback:	(287.2)	years	

Introduction:

Storage type water heaters maintain a tank of hot water continuously, so that hot water is available when it is needed. These storage tanks continuously lose heat through the outer surfaces of the tank, even though they are insulated. Water heaters with gas, oil or propane burners also lose heat through the flue when the burner is not firing.

Tankless water heaters produce hot water only when there is a demand for it. They sense the flow of water and quickly heat the water as long as there is flow, or demand, for hot water. Tankless water heaters are available with electricity, natural gas or propane as energy sources. They are best located close to the point where hot water is used.

Recommendation:

The existing hot water maker has a 75 gallon tank. The hot water loads in the facility are limited to handwashing. The storage tank can be replaced when it reaches the end of its useful life with a small, four gallon unit with a 1.65 kW coil that can be found at any local retailer inexpensively. It also may be more practical to install in-line on demand units in the furthest bathrooms since hot water takes a long time to travel across the building to reach this space.

The cost of gas is cheaper than that of electricity, but this measure is expected to be cost neutral since the storage tank losses are mostly eliminated. This measure is not recommended currently, but when the existing tank reaches the end of its life, consider a different option.

Building Electrification Measures

The following measures evaluate the impact of replacing your existing fossil-fuel heating systems with clean heating and cooling systems powered by electricity. For space heating, air source heat pumps and ground source heat pumps are available in various system types to provide both heating and cooling to your building.

Fossil fuel-fired water heaters may also be replaced with heat pump water heaters to further reduce your use of fossil fuels.

When combined with renewable electricity, heat pump systems can eliminate the use of fossil fuels in your building.

See Appendix E - Benefits Of Clean Heating and Cooling (CHC) Technologies for more information on these system types.

BE-1 Install Clean Heating System - Air Source Heat Pump

Electric Savings:	(\$ 1,344)		(15,105) 2.3	kWh per year kW demand
Fuel Savings:	\$ 1,844		203.8	MMBtu fuel per year Natural Gas
Total Annual Savings:	\$ 500			
Project Cost:	\$ 52,753			
Simple Payback:	105.5	years	84.2	years after incentives

Introduction:

Air source heat pumps (ASHP) provide both heating and cooling using electricity to exchange energy with the outdoor air. Existing buildings may be retrofitted with various heat pump technologies to reduce or eliminate their dependence on fossil fuels for space heating. System options range from centrally-ducted cold climate air source heat pumps and mini-split heat pumps to large variable refrigerant flow systems having multiple indoor units supported by each outdoor unit.

At very cold outdoor air conditions, air source heat pumps may require supplemental heat to meet your building's heating load. Supplemental heat may be in the form of electric resistance heat or your existing fossil-fueled heating system, if it remains in service. The extent to which an ASHP system reduces your fossil fuel use will depend on the exact design and control of your new system.

Recommendation:

The rooftop units serving the Court and Offices can be replaced with heat pump rooftop units. It is assumed that the existing units are sized sufficiently for all the heating needs for redundancy. They are sized to 180 Mbh, which is equivalent to 15 Tons. Heat pumps have reduced capacity at lower temperatures, so they may need to be oversized. Alternatively, the boiler plant can be used to supplement some of the heating loads using a hybrid heating solution.

The heat pumps are assumed to be rated at 15 EER full load cooling, 19 SEER. The heat pumps are assumed to be rated at 10 HSPF for heating, which may be adjusted to 2.58 COP, which is the average seasonal heating efficiency. Be sure to specify heat pumps that meet NEEP requirements (Northeast Energy Efficiency Partnerships). See https://ashp.neep.org/#!/product_list/ for current models that meet these requirements.

This measure is recommended for beneficial electrification purposes, despite the long payback. Contact a qualified contractor to receive quotes. Further study is required for the Town to make an informed decision to implement either air source or ground source heat pump upgrades as discussed in the subsequent measure.

BE-2 Install Clean Heating System - Ground Source Heat Pump

Electric Savings:	(\$ 715)	(8,034) 3.3	kWh per year kW demand
Fuel Savings:	\$ 1,811	200.2	MMBtu fuel per year Natural Gas
Total Annual Savings:	\$ 1,096		
Project Cost:	\$ 136,683		
Simple Payback:	124.7	years 113.6	years after incentives

Introduction:

Smaller buildings can take advantage of water-to-air ground source heat pump technology by replacing furnaces and other ducted systems with heat pumps having either open or closed loop ground heat exchangers. Closed loop ground heat exchangers that are properly sized provide water between 32° and 77° for heat pumps to draw heat from or reject heat to. Open loop systems see water temperatures of ~50° throughout the year. This allows heat pumps to operate at higher efficiency than air-source heat pumps that must draw from more extreme outdoor air temperatures.

The heat pumps in this type of system each have a loop pump. The building may have multiple heat pumps, but every heat pump must have a dedicated ground source heat exchanger. The heat pumps should have two-stage or variable capacity compressors for the highest efficiency. The loop pump may be constant speed, but two-speed or variable speed pumps offer higher efficiency and are preferred.

Recommendation:

Like the previous measure, ground source heat pumps can be installed to heat and cool the Town Office and Court section using rooftop water source heat pumps. This measure is more efficient than air source heat pumps but is more costly.

Install a closed loop heat pump system with variable-speed compressors and variable pumping. The heat pumps are assumed to be rated at 18 EER full load cooling, 25 EER part load. The heat pumps are assumed to be rated at 4 COP full load heating, 4.5 COP part load.

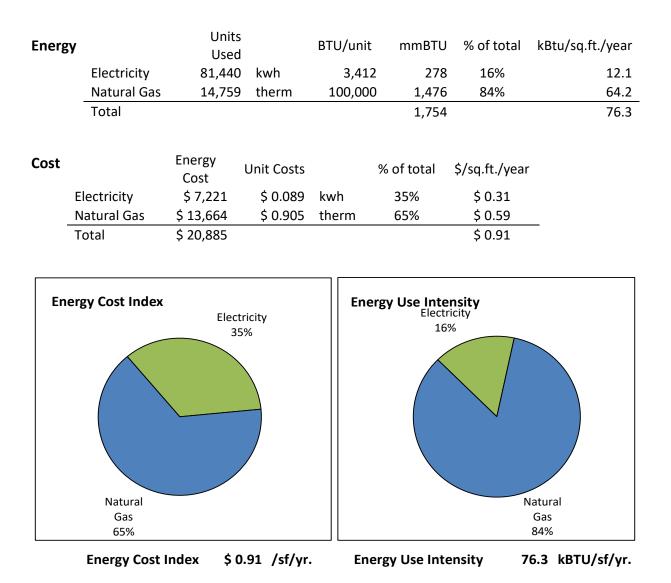
This measure is recommended for beneficial electrification purposes, despite the long payback. Contact a qualified contractor to receive quotes. Further study is required for the Town to make an informed decision to implement either air source or ground source heat pump upgrades as discussed in the subsequent measure

Appendix A

Equipment Inventory

	Heating and Air Conditioning Equipment											
Unit Type	Qty	Qty Make/Model Heating Heating KBtuh Eff. Cooling Capacity Units EEF		Ity Make/Model - Cooling Capacity Units FFR		Make/Model I I Cooling Capacity Units I F		ity Units I		Serves/Location	Year	
Boiler	1	Weil McLain LGB-2	650	80.7%				Offices & Paint Room	2024			
Rooftop Units	2	Carrier 48TCED08	180	82%	7 1/2	tons	11.0	Offices	'12/'14			
Electric Baseboard	1	N/A	7	100%				Juror Room	N/A			
Unit Heater	2	Reznor	140	77%				Mechanic's Bay	1984			
Unit Heater	2	Reznor	200	82%				Garage	2024			
Unit Heater	6	Reznor	200	77%				Garage	1984			
PTAC	1	N/A heating from boiler			1	tons	9.0	Highway Office	1984			

Domestic Hot Water										
Unit Type Qty Make/Model Capacity Units Fuel Type Storage Capacity (gal.) Eff. Serves/Location									Year	
Storage	1	A.O. Smith FCG-75-300	75	kBtu/h	Natural Gas	75	80%	Bathrooms	2014	


Motors										
Unit Type Qty Make/Model			HP	Loading	Туре	Hours/year	Eff.	Serves/Location	Year	
Zone Circulator	3	Grundfos	215 W					Offices & Paint Room	2024	
Rooftop Blower	2	Carrier	8.4 A					Offices	'12/'14	
Rooftop Condenser	op Condenser 4 Carrier 1.5 A				Offices	'12/'14				
Unit Heater Blower	10	Reznor - Est.	1/6					Garage		

				In	terior L	ighting Fixtures					
	Existing Fixtures					Recommended	Recommended Interior Lighting Efficiency Improvements				
Line #	Area	Qty	Present Lighting Type	Lamps /fixt	Watts /Fixt	Control Type	Measure Type	Qty	Proposed Lighting Type	Lamps /fixt	Watts /Fixt
1	Court	9	4' 34w T12 Std. Mag. bal	2	80	No Change	New LED Fixture	9	4' LED fixture 4500 lu. 42w	1	42
2	Court	17	13w CFL Quad Elec. bal.	1	15	No Change	LED Relamp	17	A19 LED, 9W	1	9
3	Court	11	13w CFL Quad Elec. bal.	2	28	No Change	LED Relamp	11	A19 LED, 9W	2	18
4	Juror	4	4' 32w T8 Elec. bal.	3	89	No Change	New LED Fixture	4	4' LED fixture 4500 lu. 42w	1	42
5	Court Clerk	3	4' 32w T8 Elec. bal.	3	89	Occ. Sensor Switch	New LED Fixture	3	4' LED fixture 4500 lu. 42w	1	42
6	Halls	8	4' 32w T8 Elec. bal.	2	59	No Change	New LED Fixture	8	4' LED fixture 4500 lu. 42w	1	42
7	File Storage	4	4' 32w T8 Elec. bal.	2	59	No Change	New LED Fixture	4	4' LED fixture 4500 lu. 42w	1	42
8	Bathrooms	2	4' 32w T8 Elec. bal.	2	59	Remote Occ Sensor	New LED Fixture	2	4' LED fixture 4500 lu. 42w	1	42
9	Rear Storage	7	4' 34w T12 Std. Mag. bal	2	80	No Change	New LED Fixture	7	4' LED fixture 4500 lu. 42w	1	42
10	Codes	3	4' 32w T8 Elec. bal.	3	89	No Change	New LED Fixture	3	4' LED fixture 4500 lu. 42w	1	42
11	Kitchen	6	4' 32w T8 Elec. bal.	2	59	Remote Occ Sensor	New LED Fixture	6	4' LED fixture 4500 lu. 42w	1	42
12	Clerk	6	4' 32w T8 Elec. bal.	2	59	No Change	New LED Fixture	6	4' LED fixture 4500 lu. 42w	1	42
13	Lobby	2	4' 32w T8 Elec. bal.	2	59	No Change	New LED Fixture	2	4' LED fixture 4500 lu. 42w	1	42
14	Highway Office	6	60 watt Incandescent	1	60	Occ. Sensor Switch	LED Relamp	6	A19 LED, 9W	1	9
15	Highway Office	2	4' 32w T8 Elec. bal.	3	89	Occ. Sensor Switch	New LED Fixture	2	4' LED fixture 4500 lu. 42w	1	42
16	Mechanics Bay	1	4' 34w T12 Std. Mag. bal	2	80	Remote Occ Sensor	New LED Fixture	1	4' LED fixture 4500 lu. 42w	1	42
17	Mechanics Bay	1	8' 60w T12 IS Std. Mag. b	2	138	Remote Occ Sensor	New LED Fixture	1	8' LED fixture, 8645 lu., 65W	1	65
18	Mechanics Bay	17	4' 54w T5 HLO Elec. bal.	4	234	Remote Occ Sensor	LED Relamp	17	4' LED T5HO 3300 lu. 25.5W	4	102
19	Breakroom	4	4' 32w T8 Elec. bal.	2	59	Remote Occ Sensor	New LED Fixture	4	4' LED fixture 4500 lu. 42w	1	42
20	Parts Room	4	4' 32w T8 Elec. bal.	2	59	Remote Occ Sensor	New LED Fixture	4	4' LED fixture 4500 lu. 42w	1	42
21	Garage	10	4' 54w T5 HLO Elec. bal.	6	351	Remote Occ Sensor	LED Relamp	10	4' LED T5HO 3300 lu. 25.5W	6	153
22	Garage	6	4' 54w T5 HLO Elec. bal.	4	234	Remote Occ Sensor	LED Relamp	6	4' LED T5HO 3300 lu. 25.5W	4	102
23	Garage	8	4' 32w T8 Elec. bal.	2	59	Remote Occ Sensor	New LED Fixture	8	4' LED fixture 4500 lu. 42w	1	42

All other lights are LED.

Appendix B

Energy Use and Cost Summary

Utility Bill Data

The following pages present the energy use and cost data for your facility and establish the value of each type of energy. Electricity is measured and billed in units of kilowatt-hours (kWh) that represent the total amount of electricity used in the billing period. Electricity may also be billed based on the highest rate of use, or peak demand, that occurred during the billing period. Electric demand is billed in units of kilowatts (kW).

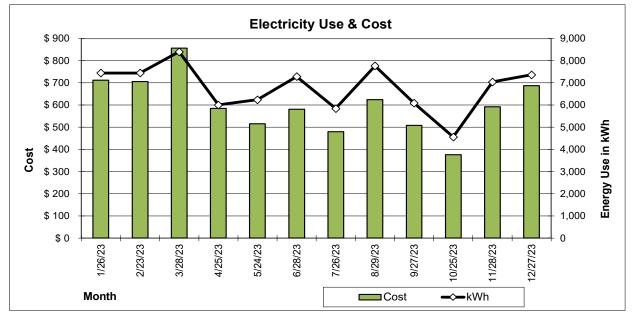
Other fuels may be billed in volume units (gallons, hundred cubic feet or ccf, etc.) or based on their heat content (therms, equal to 100,000 British Thermal Units). All energy types may be converted into a common unit, such as BTUs, to facilitate analysis and comparison with other facilities. One million BTUs is abbreviated as mmBtu in this report.

ELECTRICITY CONSUMPTION AND COST ANALYSIS

Town of Groton - Municipal Building

Gross Area:	23,000	s.f.
	12,081	Btu/s.f./Yr
	\$ 0.31	/s.f.

Utility:	Village of Gro	ton					
Account #	Account # ends w/ 30-0						
Rate:							
Meter Charge:	\$ 0.00	/ month					
Demand Charge:	\$ 0.00	/ kW					
Supplier:							


		Usa	ge	Electricity Charges		Total					
Month		Energy	Demand	Utility	Supply	Electricity		Demand	Energy	Load	Usage
Ending	Days	kWh	kW	Cost	Costs	Cost		Cost	\$/kWh	Factor	/day
1/26/23	30	7,440				\$ 712		\$ 0	\$ 0.096	N/A	248
2/23/23	28	7,440				\$ 706		\$ 0	\$ 0.095	N/A	266
3/28/23	33	8,400				\$ 856		\$ 0	\$ 0.102	N/A	255
4/25/23	28	6,000				\$ 585		\$ 0	\$ 0.097	N/A	214
5/24/23	29	6,240				\$ 515		\$ 0	\$ 0.083	N/A	215
6/28/23	35	7,280				\$ 581		\$ 0	\$ 0.080	N/A	208
7/26/23	28	5,840				\$ 480		\$ 0	\$ 0.082	N/A	209
8/29/23	34	7,760				\$ 624		\$ 0	\$ 0.080	N/A	228
9/27/23	29	6,080				\$ 508		\$ O	\$ 0.084	N/A	210
10/25/23	28	4,560				\$ 375		\$ 0	\$ 0.082	N/A	163
11/28/23	34	7,040				\$ 592		\$ O	\$ 0.084	N/A	207
12/27/23	29	7,360				\$ 687		\$ O	\$ 0.093	N/A	254
	365	81,440				\$ 7,221	-	\$ 0	\$ 0.089	N/A	223

Annual Energy: Peak Demand: Average Demand:

81,440 kWh / year \$7,221 /year kW Peak

kW

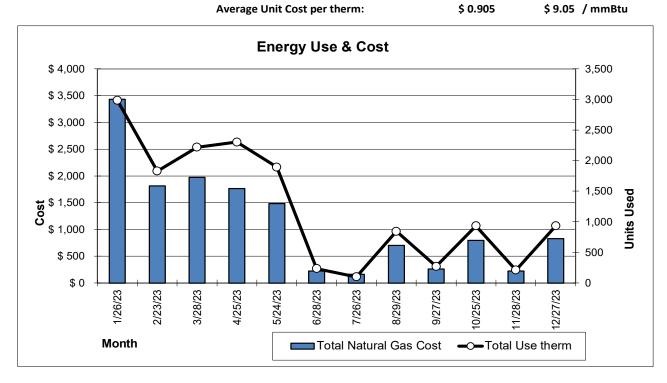
NATURAL GAS CONSUMPTION AND COST ANALYSIS

Town of Groton - Municipal Building

23,000	s.f.
64,170	Btu/s.f./Yr
\$ 0.59	/s.f.

Natural Gas

Use & Cost Summary:


Utility:	NYSEG	
Account # :	ends w/ -580,	
Rate:	SC Non-Reside	ential
Billing unit:	therm	
BTU/Unit:	100,000	
Meter Charge:	\$ 25.60	/ month
Supplier:	Direct Energy	

Month	#	Utility Cl	narges	Supplier	Charges	Total Use	Total Natural	Average
Ending	Days	therm	Cost	therm	Cost	therm	Gas Cost	\$/therm
1/26/23	30	2,987	\$ 925	2,987	\$ 2,504	2,987	\$ 3,429	\$ 1.14
2/23/23	28	1,829	\$ 621	1,829	\$ 1,193	1,829	\$ 1,814	\$ 0.98
3/28/23	33	2,219	\$ 830	2,219	\$ 1,146	2,219	\$ 1,975	\$ 0.88
4/25/23	28	2,302	\$ 737	2,302	\$ 1,029	2,302	\$ 1,766	\$ 0.76
5/24/23	29	1,895	\$ 688	1,895	\$ 794	1,895	\$ 1,482	\$ 0.77
6/28/23	35	235	\$ 127	235	\$ 99	235	\$ 225	\$ 0.85
7/26/23	28	101	\$ 118	101	\$ 42	101	\$ 160	\$ 1.34
8/29/23	34	844	\$ 330	844	\$ 373	844	\$ 703	\$ 0.80
9/27/23	29	271	\$ 142	271	\$ 118	271	\$ 260	\$ 0.87
10/25/23	28	933	\$ 382	933	\$ 415	933	\$ 797	\$ 0.83
11/28/23	34	211	\$ 121	211	\$ 100	211	\$ 222	\$ 0.93
12/27/23	29	933	\$ 387	933	\$ 444	933	\$ 830	\$ 0.86
	365	14,759	\$ 5,407	14,759	\$ 8,257	14,759	\$ 13,664	\$ 0.90

Annual Natural Gas Cost Annual Natural Gas Consumption Average Unit Cost per therm:

\$13,664 /year 14,759 therm

\$ 9.05 / mmBtu

Appendix C

EEM Calculations

Interactions

The Energy Efficiency Measure calculations in this section are stand-alone measures that are not interacted with the other calculations. Each measure shows the energy savings that may be expected if it is the only measure to be implemented. If multiple measures will be implemented, energy savings will likely be lower than the calculations represent.

As an example, replacing an 80% efficient boiler with a 92% efficient boiler will reduce the amount of fuel required to heat the building. If the walls and roof are insulated such that the required heating energy is reduced by 30%, the new boiler will serve a smaller heating load, and the energy savings gained from the boiler replacement will be reduced by 30%.

		FOR INTERIOR LI			KOFII		-				-				-			<u> </u>								
EEM-1	Tow	n of Groton - Municip	al Buildi	ing			Type:	Units:	Unit cost:	BTU/unit							tment Facto	-								
						N	latural Gas	therm	\$ 0.905	100,000						Cooling	Demand	Fuel								
							Electricity		\$ 0.089	3,412						HVACc	HVACd	HVACg								
							Demand	kW	\$ 0.00		Months	of demand savings/year			_											
							15%	of building	is air condit	ioned																
Existing Interior L	ighting	g Systems			Recommend	ed				Recommended Inte												Ener	gy & Demar	nd Calculation	s	
			_		Lighting Cont	rols				Lighting Efficiency	mproven	nents	_								Demand			al Use	Energ	y Savings
Area	Qty	Present Lighting Type	Lamps /fixt	Watts /Fixt	Control Type	% Reduction	Present Hrs./yr.	Proposed Hrs./yr.	# Controls required	Measure Type	Qty	Proposed Lighting Type	Lamps /fixt	Reflec or ?	t Watts /Fixt	Project Cost	Annual Savings	kWh/yr. Savings	Payback (Years)	Present kW	Proposed kW	kW Saved	Present kwh/year	Proposed kwh/year	Controls kwh/year	Efficiency kwh/year
Court	9	4' 34w T12 Std. Mag. ba	a 2	80	No Change	0%	400	400	0	New LED Fixture	9	4' LED fixture 4500 lu. 4	1		42	\$ 1,404	\$ 12	137	115.3	0.7	0.4	0.3	288	151	0	13
Court	17	13w CFL Quad Elec. ba	ıl. 1		No Change	0%	400	400	0	LED Relamp	17	A19 LED, 9W	1		9	\$ 61	\$4	41	16.9	0.3	0.2	0.1	102	61	0	4
Court	11	13w CFL Quad Elec. ba	al. 2		No Change	0%	400	400	0	LED Relamp	11	A19 LED, 9W	2		18	\$ 79	\$4	44		0.3	0.2	0.1	123	79	0	4
Juror	4	4' 32w T8 Elec. bal.	3		No Change	0%	400	400	0	New LED Fixture	4	4' LED fixture 4500 lu. 4	1		42	\$ 624	\$7	75	93.2	0.4	0.2	0.2	142	67	0	7
Court Clerk	3	4' 32w T8 Elec. bal.	3	89		10%	2,000	1,800	1	New LED Fixture	3	4' LED fixture 4500 lu. 4	1		42	\$ 558	\$ 27	307	20.4	0.3	0.1	0.1	534	227	53	25
Halls	8	4' 32w T8 Elec. bal.	2	59		0%	2,000	2,000	0	New LED Fixture	8	4' LED fixture 4500 lu. 4	1		42	\$ 1,248	\$ 24	272	51.6	0.5	0.3	0.1	944	672	0	27
File Storage	4	4' 32w T8 Elec. bal.	2		No Change	0%	200	200	0	New LED Fixture	4	4' LED fixture 4500 lu. 4	1		42	\$ 624	\$1	14		0.2	0.2	0.1	47	34	0	1
Bathrooms	2	4' 32w T8 Elec. bal.	2		Remote Occ	25%	1,000	750	1	New LED Fixture	2	4' LED fixture 4500 lu. 4	1		42	\$ 552	\$5	55		0.1	0.1	0.0	118	63		2
Rear Storage	7	4' 34w T12 Std. Mag. ba	a 2		No Change	0%	100	100	0	New LED Fixture	7	4' LED fixture 4500 lu. 4	1		42	\$ 1,092	\$2	27	461.3	0.6	0.3	0.3	56	29	0	2
Codes	3	4' 32w T8 Elec. bal.	3		No Change	0%	2,000	2,000	0	New LED Fixture	3	4' LED fixture 4500 lu. 4	1		42	\$ 468	\$ 25	282	18.6	0.3	0.1	0.1	534	252	0	28
Kitchen	6	4' 32w T8 Elec. bal.	2	59		10%	2,000	1,800	1	New LED Fixture	6	4' LED fixture 4500 lu. 4	1		42	\$ 1,176	\$ 23	254	51.9	0.4	0.3	0.1	708	454	71	18
Clerk	6	4' 32w T8 Elec. bal.	2	59		0%	2,000	2,000	0	New LED Fixture	6	4' LED fixture 4500 lu. 4	1		42	\$ 936	\$ 18	204	51.6	0.4	0.3	0.1	708	504	0	20
Lobby Highway Office	2	4' 32w T8 Elec. bal. 60 watt Incandescent	2		No Change Occ. Sensor S	0% 10%	2,000	2,000	0	New LED Fixture	2	4' LED fixture 4500 lu. 4 A19 LED. 9W	1		42	\$ 312 \$ 112	\$6	68	51.6 2.0	0.1	0.1	0.0	236 720	168 97	0	55
Highway Office	5	4' 32w T8 Elec, bal.	1		Occ. Sensor S	10%	2,000	1,800	1	LED Relamp New LED Fixture	6	4' LED fixture 4500 lu. 4	1		42	\$ 112	\$ 55 \$ 18	623 205	2.0	0.4	0.1	0.3	356	97	72	55
Mechanics Bay	2	4' 34w T12 Std. Mag. ba	3	89		10%	2,000	1,800	1	New LED Fixture	1	4 LED fixture 4500 lu. 4 4' LED fixture 4500 lu. 4	1		42	\$ 402	\$ 18	205	52.7	0.2	0.0	0.1	356	76	36	16
Mechanics Bay	1	8' 60w T12 IS Std. Mag. 0	a 2	138		10%	2,000	1,800	1	New LED Fixture	1	8' LED fixture, 8645 lu., 4	1		65	\$ 400	\$ 14	159	28.2	0.1	0.0	0.0	276	117	28	13
Mechanics Bay	17	4' 54w T5 HLO Elec. ba	1 4	234		10%	2,000	1,800	inc.	LED Relamp	17	4' LED T5HO 3300 lu. 25	4		102	\$ 1.026	\$ 430	4.835	2.4	4.0	1.7	2.2	7.956	3.121	796	4.03
Breakroom	4	4' 32w T8 Elec. bal.	. 7	59		10%	2,000	1,800	1	New LED Fixture	4	4' LED fixture 4500 lu. 4	1		42	\$ 864	\$ 15	170	57.2	0.2	0.2	0.1	472	302	47	4,03
Parts Room	4	4' 32w T8 Elec. bal.	2		Remote Occ	10%	2,000	1,800	1	New LED Fixture	4	4' LED fixture 4500 lu. 4	1		42	\$ 864	\$ 15	170	57.2	0.2	0.2	0.1	472	302	47	12
Garage	10	4' 54w T5 HLO Elec, bal	6	351		10%	2,000	1.800	4	LED Relamp	10	4' LED T5HO 3300 lu. 25	6		153	\$ 1.865	\$ 380	4.266	4.9	3.5	1.5	2.0	7,020	2,754	702	3.56
Garage	6	4' 54w T5 HLO Elec. bal	1. 4	234		10%	2.000	1.800	2	LED Relamp	6	4' LED T5HO 3300 lu. 25	4		102	\$ 842	\$ 152	1.706	5.5	1.4	0.6	0.8	2,808	1,102	281	1,42
Garage	8	4' 32w T8 Elec. bal.	2	59	Remote Occ	10%	2,000	1,800	2	New LED Fixture	8	4' LED fixture 4500 lu. 4	1		42	\$ 1,728	\$ 30	339	57.2	0.5	0.3	0.1	944	605	94	24
	141		15.0	kW exis	ting				17		141	Ì	7.4	kW pr	oposed					15.0	7.4	7.6	25,725	11,389	2,272	12,06
Note: bal. = ballas	t, EE =	energy efficient, STD = s	standard	efficienc	y, mag. = magi	netic, Elec.	= electroni	c, CFL = cor	npact fluore	scent lamp															14,336	kwh
SUMMARY OF SA	VINGS	S BY MEASURE TYPE:		Fixture	Energy S	avings	Demand																			
		Measure Type		Qty.	Controls kwh/year	Efficiency kwh/year	kW Savings	Project Cost	Electric Savings	Payback (Years)	Measur	e Description														
EEM-1C		LED Relamp		67		9,664	5.5	\$ 2,455	\$ 860	2.9	Screw-i	n or Socket based LED lan	nps													
EEM-1G		New LED Fixture		74		2,400	2.0	\$ 11,548	\$ 214	54.1	New LE	D fixture for surface mou	nting													
EEM-1M		Occ. Sensor Switch		3	161			\$ 270	\$ 14	18.8	Wall Mo	ounted Occupancy Sensor														
EEM-10		Remote Occ Sensor		14	_,			\$ 3,360	\$ 188	17.9	Remote	Mounted Occupancy Ser	isor													
				141	<u> </u>	12,064	7.6	\$ 17,632	\$ 1,276						_											
		Gross Energ			14,336																					
		Net Energy	y Savings		14,336	kwh	7.6	0	therm	\$ 1,276	net															
PAYBACK PERIOD	:														_							_				
		Estimated Cost Interior	0.0			= 13.8 yea	ar payback																			
		Annual Energy Savings	(kWh + k	W):	\$ 1,276																					

EEM-2					NUL	
=⊏IVI-2	rown of	Groton - M	unicipal Buil	ung		
INPUT DATA:		100%	of Building to be	Setback		
		10070	Current	Proposed		
Heating T Set	point:	Occupied	70	70	deg. F.	
		Unoccupied	70	65	deg. F.	
Cooling T Setp	point:	Occupied	74	74	deg. F.	
		Unoccupied	77	77	deg. F.	
HVAC Schedu	le	Occupied	40.0	40.0	Hours per week	
		Unoccupied	128.0	128.0	Hours per week	
Q internal gai	ns:	Occupied	21,281	21,281	Btuh	
		Unoccupied	4,720	4,720	Btuh	
Q internal gai	ns:	Schedule	40	40	Hours per week	
BLC:		Occupied	6,970	6,970	Btuh/deg. F.	
(excludes DO	45)	Unoccupied	4,973	4,973	Btuh/deg. F.	
		Fuel Data Type:	Heating Natural Gas			
		Units:	therm			
		Unit cost:	\$ 0.905			
		BTU/unit	100,000			
	Ef	ficiency/ COP:	78.6%			
CALCULATION	NS:					
Current		Binghamton,	40 hrs./week			
	Occupied	Unoccupied	Occ Net Heat	Unocc Net Heat	Heating Fuel	
Bin Mid Pt.	Hours	Hours	Loss BTUH	Loss BTUH	Use therm	
(7 -)			518,901	380,681	29	
(7.5)	0	6 17	484,050	380,681 355,816	89	
2.5	5	44	449,200	330,951	214	
7.5	6	98	414,349	306,087	413	
12.5	24	169	379,499	281,222	721	
17.5	82	341	344,648	256,358	1,472	
22.5	128	323	309,798	231,493	1,456	
27.5	80 203	384 635	274,947 240,097	206,629 181,764	1,290 2,089	
37.5	158	636	205,247	156,899	1,683	
42.5	123	533	170,396	132,035	1,162	
47.5	199	619	135,546	107,170	1,188	
52.5	160	446	100,695	82,306	672	
57.5	165	702	65,845	57,441	651	
62.5 67.5	228 147	774 448	30,994 0	32,576 7,712	411 44	
07.5	8,760		Ŭ	7,712	13,585	
Proposed	-,		40 hrs./week			
Toposed	Occupied	Unoccupied	Occ Net Heat	Unocc Net Heat	Heating Fuel	
Bin Mid Pt.	Hours	Hours	Loss BTUH	Loss BTUH	Use therm	
(7.5)		6	518,901	355,816	27	
(2.5)	2	17	484,050	330,951	84	
2.5	5	44	449,200	306,087	200	
7.5	6	98	414,349	281,222	382	
12.5 17.5	24 82	169 341	379,499 344,648	256,358 231,493	667 1,364	
22.5	128	323	309,798	206,629	1,364	
27.5	80	384	274,947	181,764	1,168	
32.5	203	635	240,097	156,899	1,888	
37.5	158	636	205,247	132,035	1,481	
42.5	123	533	170,396	107,170	994 992	
47.5	199 160	619 446	135,546 100,695	82,306 57,441	531	
57.5	160	702	65,845	32,576	429	
62.5	228	774	30,994	7,712	166	
	8,760	hours			11,729	
			Present	Proposed	Savings	
		Heating	13,585	11,729	1,856	therm
		Cooling	15,585	0	1,850	0
		Annual Energ		0	\$ 1,680	0
					÷ 1,000	
INPLEMENTA	TION COST	& PAYBACK P	ERIOD:			
		Material				
Item	ļ	\$/unit	Labor \$/unit	Quantity	Total	
Wi-fi thermos		\$ 146	\$ 51	4	\$ 787	
7-day thermo	ostat	\$ 97	\$ 51		\$ 0	
					\$ 787	
	lanal			4 ====	- 05	o oli
	Implementa			\$ 787	= 0.5 year payb	dCK
	Annual Fne	rgy Savings:		\$1,680		

	Town of Groton - Municip	al Building					
NPUT DA							-
	Bldg. Volume	321,993	cubic feet			Present infiltrat	
			ACH	Period	Cu. ft./hr.	CFM	btuh/deg.
	Baseline infiltration rate		0.60	Occupied	193,196	3,220	3,478
	from heat loss study		0.30	Unoccupied	96,598	1,610	1,739
	Proposed Reductions	Crack Length		Rate - cfh		Leakage - net c	
	Cubic feet per hour	lineal feet	Present	New	Present	Proposed	Savings
	Roof - Wall Joint				0	0	
	Window Jamb to Wall				0	0	
	Operable Window WS				0	0	
	Door Sweeps & WS	1,024	30	5	15,360	2,560	12,80
	Fireplace				0	0	
					15,360		12,80
	Proposed Reductions	Air chang	1			oposed infiltra	
	Air changes/hour	% reduction	Proposed	Period	Cu. ft./hr.	CFM	btuh/deg.
		7%	0.56	Occupied	180,396	3,007	3,247
		13%	0.26	Unoccupied	83,798	1,397	1,508
	Total Infiltration & Reduction	Occupied	193,196	180,396	12,800	cfh savings	
	Cu.Ft./hour	Unoccupied	96,598	83,798	12,800	cfh savings	
	vings = (Present Leakage - New st Savings = (Energy Savings / C			Difference x cr.	<u></u>		
		Occupied	Unoccupied				
	T Setpoint:	70	70	°F			
			4,720	Btuh			
	Q internal gains: BLC:	21,281 6,970	4,720 4,973				
	Q internal gains:	21,281		Btuh	T Setpoint	- (Q internal ga	ins / BLC)
	Q internal gains: BLC: T Balance: Bin Data for Binghamton, 40 h	21,281 6,970 66.9 rs./week	4,973 69.1	Btuh Btuh/°F °F. T Balance =		- (Q internal ga	ins / BLC)
	Q internal gains: BLC: T Balance: Bin Data for Binghamton, 40 h Accumulated Hours	21,281 6,970 66.9 rrs./week 1,563	4,973 69.1 6,175	Btuh Btuh/°F °F. T Balance = below balance	temp.	- (Q internal ga	ins / BLC)
	Q internal gains: BLC: T Balance: Bin Data for Binghamton, 40 h Accumulated Hours Avg. OAT	21,281 6,970 66.9 irs./week 1,563 42.4	4,973 69.1 6,175 43.0	Btuh Btuh/°F °F. T Balance = below balance °F below balance	temp.	- (Q internal ga	ins / BLC)
	Q internal gains: BLC: T Balance: Bin Data for Binghamton, 40 h Accumulated Hours	21,281 6,970 66.9 rrs./week 1,563	4,973 69.1 6,175	Btuh Btuh/°F °F. T Balance = below balance	temp.	- (Q internal ga	ins / BLC)
	Q internal gains: BLC: T Balance: Bin Data for Binghamton, 40 h Accumulated Hours Avg. OAT (T Set- Avg OAT)	21,281 6,970 66.9 mrs./week 1,563 42.4 27.6	4,973 69.1 6,175 43.0	Btuh Btuh/°F °F. T Balance = below balance °F below balance	temp.	- (Q internal ga	ins / BLC)
	Q internal gains: BLC: T Balance: Bin Data for Binghamton, 40 H Accumulated Hours Avg. OAT (T Set- Avg OAT) Type:	21,281 6,970 66.9 mrs./week 1,563 42.4 27.6 Natural Gas	4,973 69.1 6,175 43.0	Btuh Btuh/°F °F. T Balance = below balance °F below balance	temp.	- (Q internal ga	ins / BLC)
	Q internal gains: BLC: T Balance: Bin Data for Binghamton, 40 h Accumulated Hours Avg. OAT (T Set- Avg OAT) Type: Units:	21,281 6,970 66.9 mrs./week 1,563 42.4 27.6 Natural Gas therm	4,973 69.1 6,175 43.0 27.0	Btuh Btuh/°F °F. T Balance = below balance °F below balance	temp.	- (Q internal ga	ins / BLC)
	Q internal gains: BLC: T Balance: Bin Data for Binghamton, 40 h Accumulated Hours Avg. OAT (T Set- Avg OAT) Type: Units: Unit cost:	21,281 6,970 66.9 ms./week 1,563 42.4 27.6 Natural Gas therm \$ 0.905	4,973 69.1 6,175 43.0 27.0 /therm	Btuh Btuh/°F °F. T Balance = below balance °F below balance	temp.	- (Q internal ga	ins / BLC)
	Q internal gains: BLC: T Balance: Bin Data for Binghamton, 40 h Accumulated Hours Avg. OAT (T Set- Avg OAT) Type: Units: Unit cost: CF1	21,281 6,970 66.9 mrs./week 1,563 42.4 27.6 Natural Gas therm	4,973 69.1 6,175 43.0 27.0	Btuh Btuh/°F °F. T Balance = below balance °F below balance	temp.	- (Q internal ga	ins / BLC)
	Q internal gains: BLC: T Balance: Bin Data for Binghamton, 40 h Accumulated Hours Avg. OAT (T Set- Avg OAT) Type: Units: Unit cost:	21,281 6,970 66.9 irs./week 1,563 42.4 27.6 Natural Gas therm \$ 0.905 100,000	4,973 69.1 6,175 43.0 27.0 /therm Btu/therm	Btuh Btuh/°F °F. T Balance = below balance °F below balance	temp.	- (Q internal ga	ins / BLC)
	Q internal gains: BLC: T Balance: Bin Data for Binghamton, 40 h Accumulated Hours Avg. OAT (T Set- Avg OAT) (T Set- Avg OAT) Units: Unit cost: CF1 Efficiency:	21,281 6,970 66.9 irs./week 1,563 42.4 27.6 Natural Gas therm \$ 0.905 100,000 78.6%	4,973 69.1 6,175 43.0 27.0 /therm	Btuh Btuh/°F °F. T Balance = below balance °F below balance	temp.	- (Q internal ga	ins / BLC)
	Q internal gains: BLC: T Balance: Bin Data for Binghamton, 40 h Accumulated Hours Avg. OAT (T Set- Avg OAT) (T Set- Avg OAT) Units: Unit cost: CF1 Efficiency:	21,281 6,970 66.9 irs./week 1,563 42.4 27.6 Natural Gas therm \$ 0.905 100,000 78.6% 0.018	4,973 69.1 6,175 43.0 27.0 /therm Btu/therm	Btuh/°F °F. T Balance = below balance °F below balar °F difference	temp.	- (Q internal ga	ins / BLC)
	Q internal gains: BLC: T Balance: Bin Data for Binghamton, 40 H Accumulated Hours Avg. OAT (T Set- Avg OAT) Type: Units: Unit cost: CF1 Efficiency: CF2	21,281 6,970 66.9 irs./week 1,563 42.4 27.6 Natural Gas therm \$ 0.905 100,000 78.6% 0.018 Ene Occupied	4,973 69.1 6,175 43.0 27.0 /therm Btu/therm Btu/therm Btu/hr-°F-cfh rgy Use - Btu/ye Unoccupied	Btuh/°F °F. T Balance = below balance °F below balar °F difference	temp. ice temp. Fuel Use therm / yr	- (Q internal ga	ins / BLC)
	Q internal gains: BLC: T Balance: Bin Data for Binghamton, 40 H Accumulated Hours Avg. OAT (T Set- Avg OAT) Type: Units: Unit cost: CF1 Efficiency: CF2 Baseline infiltration rate	21,281 6,970 66.9 irs./week 1,563 42.4 27.6 Natural Gas therm \$ 0.905 100,000 78.6% 0.018 Ene Occupied 150,237,700	4,973 69.1 6,175 43.0 27.0 /therm Btu/therm Btu/therm Btu/hr-°F-cfh rgy Use - Btu/ye Unoccupied 289,760,400	Btuh Btuh/°F °F. T Balance = below balance °F below balar °F difference ear Total 439,998,100	temp. ice temp. Fuel Use therm / yr 5,600	- (Q internal ga	ins / BLC)
	Q internal gains: BLC: T Balance: Bin Data for Binghamton, 40 H Accumulated Hours Avg. OAT (T Set- Avg OAT) Type: Units: Unit cost: CF1 Efficiency: CF2	21,281 6,970 66.9 irs./week 1,563 42.4 27.6 Natural Gas therm \$ 0.905 100,000 78.6% 0.018 Ene Occupied	4,973 69.1 6,175 43.0 27.0 /therm Btu/therm Btu/therm Btu/hr-°F-cfh rgy Use - Btu/ye Unoccupied	Btuh Btuh/°F °F. T Balance = below balance °F below balar °F difference °F difference ar Total 439,998,100 391,648,700	temp. ice temp. Fuel Use therm / yr		ins / BLC)
MPLEME	Q internal gains: BLC: T Balance: Bin Data for Binghamton, 40 H Accumulated Hours Avg. OAT (T Set- Avg OAT) Type: Units: Unit cost: CF1 Efficiency: CF2 Baseline infiltration rate	21,281 6,970 66.9 irs./week 1,563 42.4 27.6 Natural Gas therm \$ 0.905 100,000 78.6% 0.018 Ene Occupied 150,237,700 140,283,900	4,973 69.1 6,175 43.0 27.0 /therm Btu/therm Btu/therm Btu/hr-°F-cfh rgy Use - Btu/ye Unoccupied 289,760,400	Btuh Btuh/°F °F. T Balance = below balance °F below balar °F difference ear Total 439,998,100	temp. ice temp. Fuel Use therm / yr 5,600		ins / BLC)
MPLEME	Q internal gains: BLC: T Balance: Bin Data for Binghamton, 40 H Accumulated Hours Avg. OAT (T Set- Avg OAT) Type: Units: Unit cost: CF1 Efficiency: CF2 Baseline infiltration rate Proposed infiltration rate	21,281 6,970 66.9 mrs./week 1,563 42.4 27.6 Natural Gas therm \$ 0.905 100,000 78.6% 0.018 Ene Occupied 150,237,700 140,283,900	4,973 69.1 6,175 43.0 27.0 /therm Btu/therm Btu/therm Btu/hr-°F-cfh rgy Use - Btu/ye Unoccupied 289,760,400 251,364,800	Btuh Btuh/°F °F. T Balance = below balance °F below balar °F difference °F difference ar Total 439,998,100 391,648,700	temp. .ce temp. Fuel Use therm / yr 5,600 4,985		ins / BLC)
MPLEME	Q internal gains: BLC: T Balance: Bin Data for Binghamton, 40 H Accumulated Hours Avg. OAT (T Set- Avg OAT) (T Set- Avg OAT) Type: Units: Unit cost: CF1 Efficiency: CF2 Baseline infiltration rate Proposed infiltration rate	21,281 6,970 66.9 ms./week 1,563 42.4 27.6 Natural Gas therm \$ 0.905 100,000 78.6% 0.018 Ene Occupied 150,237,700 140,283,900 IOD: Matl. & Labor	4,973 69.1 6,175 43.0 27.0 /therm Btu/therm Btu/therm Btu/hr-°F-cfh rgy Use - Btu/ye Unoccupied 289,760,400 251,364,800	Btuh Btuh/°F °F. T Balance = below balance °F below balar °F difference °F difference ar Total 439,998,100 391,648,700 Total Savings	temp. .ce temp. Fuel Use therm / yr 5,600 4,985		ins / BLC)
MPLEME	Q internal gains: BLC: T Balance: Bin Data for Binghamton, 40 F Accumulated Hours Avg. OAT (T Set- Avg OAT) Type: Units: Unit cost: CF1 Efficiency: CF2 Baseline infiltration rate Proposed infiltration rate Item	21,281 6,970 66.9 ms./week 1,563 42.4 27.6 Natural Gas therm \$ 0.905 100,000 78.6% 0.018 Ene Occupied 150,237,700 140,283,900 IOD: Matl. & Labor (\$ / lin ft)	4,973 69.1 6,175 43.0 27.0 /therm Btu/therm Btu/therm Btu/hr-°F-cfh unoccupied 289,760,400 251,364,800 Quantity (lin ft)	Btuh Btuh/°F °F. T Balance = below balance °F below balar °F difference °F difference ar Total 439,998,100 391,648,700 Total Savings	temp. .ce temp. Fuel Use therm / yr 5,600 4,985		ins / BLC)
MPLEME	Q internal gains: BLC: T Balance: Bin Data for Binghamton, 40 H Accumulated Hours Avg. OAT (T Set- Avg OAT) Type: Units: Unit cost: CF1 Efficiency: CF2 Baseline infiltration rate Proposed infiltration rate NTATION COST & PAYBACK PER Item Weather-stripping	21,281 6,970 66.9 ms./week 1,563 42.4 27.6 Natural Gas therm \$ 0.905 100,000 78.6% 0.018 Ene Occupied 150,237,700 140,283,900 IOD: Matl. & Labor	4,973 69.1 6,175 43.0 27.0 /therm Btu/therm Btu/therm Btu/hr-°F-cfh rgy Use - Btu/ye Unoccupied 289,760,400 251,364,800	Btuh Btuh/°F °F. T Balance = below balance °F below balar °F difference Total 439,998,100 391,648,700 Total Savings Total \$ 3,072	temp. .ce temp. Fuel Use therm / yr 5,600 4,985		ins / BLC)
MPLEME	Q internal gains: BLC: T Balance: Bin Data for Binghamton, 40 h Accumulated Hours Avg. OAT (T Set- Avg OAT) Type: Units: Unit cost: CF1 Efficiency: CF2 Baseline infiltration rate Proposed infiltration rate NTATION COST & PAYBACK PER Item Weather-stripping Caulking	21,281 6,970 66.9 ms./week 1,563 42.4 27.6 Natural Gas therm \$ 0.905 100,000 78.6% 0.018 Ene Occupied 150,237,700 140,283,900 IOD: Matl. & Labor (\$ / lin ft)	4,973 69.1 6,175 43.0 27.0 /therm Btu/therm Btu/therm Btu/hr-°F-cfh unoccupied 289,760,400 251,364,800 Quantity (lin ft)	Btuh Btuh/°F °F. T Balance = below balance °F below balar °F difference ar Total 439,998,100 391,648,700 Total Savings Total \$ 3,072 \$ 0	temp. .ce temp. Fuel Use therm / yr 5,600 4,985		ins / BLC)
MPLEME	Q internal gains: BLC: T Balance: Bin Data for Binghamton, 40 H Accumulated Hours Avg. OAT (T Set- Avg OAT) Type: Units: Unit cost: CF1 Efficiency: CF2 Baseline infiltration rate Proposed infiltration rate NTATION COST & PAYBACK PER Item Weather-stripping	21,281 6,970 66.9 ms./week 1,563 42.4 27.6 Natural Gas therm \$ 0.905 100,000 78.6% 0.018 Ene Occupied 150,237,700 140,283,900 IOD: Matl. & Labor (\$ / lin ft)	4,973 69.1 6,175 43.0 27.0 /therm Btu/therm Btu/therm Btu/hr-°F-cfh rgy Use - Btu/ye Unoccupied 289,760,400 251,364,800 Quantity (lin ft) 1,024	Btuh Btuh/°F °F. T Balance = below balance °F below balar °F difference Total 439,998,100 391,648,700 Total Savings Total \$ 3,072	temp. .ce temp. Fuel Use therm / yr 5,600 4,985	\$ 557	ins / BLC)

EEM-4	Town of Gr	oton - Munic	ipal Building		
INPUT DATA	A:				
Surface to be	insulated:	Roof	Walls		
Area:		17,725	2,002	sq ft	
Present R valu	ue:	10.0	3.7		
Revised R valu	ue	38.0	17.7		
Present U fac	tor::	0.100	0.272	Btuh/sq ft-deg F	
Revised U fac	tor:	0.026	0.057	Btuh/sq ft-deg F	
Present U x A	rea	1,773	544	2,317	UA Total prese
Proposed U x	Area	466	113	580	UA Total propo
CALCULATIC	DNS:	Occupied	Unoccupied	Fuel Data	Heating
Heating Setpo	pint:	60	60	Туре:	Natural Gas
Cooling Setpo				Units:	therm
Q internal gai		21,281	4,720	Unit cost:	
BLC (Btuh/de			4,973	BTU/unit	
		6,970 56.9	59.1		
T Balance (°F.				Efficiency/ COP:	78.0%
I Balance = I	Setpoint - (Q in	ternal gains / BL		EER:	
	Occupied	Unoccupied	Change in Occupied	Change in Unecounied	Heating Souing
Bin Mid-Pt.	Occupied	Unoccupied	Change in Occupied Heat Loss	Change in Unoccupied Heat Loss	Heating Savings
(7.5)	Hours	Hours		117,239	therm
(7.5)	0	6 17	117,239 108,555	117,239	9
2.5	5	44	99,870	99,870	63
7.5	6	98	91,186	91,186	122
12.5	24	169	82,502	82,502	204
17.5	82	341	73,817	73,817	400
22.5	128	323	65,133	65,133	377
27.5	80	384	56,448	56,448	336
32.5	203	635	47,764	47,764	513
37.5 42.5	158 123	636 533	39,080 30,395	39,080 30,395	398 256
42.5	123	619	21,711	21,711	236
52.5	160	446	13,027	13,027	101
57.5	165	702	(99,870)	4,342	39
62.5	228	774	(108,555)	(108,555)	0
67.5	147	448	(117,239)	(117,239)	0
	8,760	hours		Energy Savings:	3,071
					\$ 2,779
MPLEMENTA	TION COST & I	PAYBACK PERIO	D:		
		Material & Labor	-		
	Item	(\$ / sq ft)	Quantity	Total	
	Roof	\$ 4.00	17,725	\$ 70,902	
	Walls	\$ 2.00	2,002	\$ 4,004	
		\$ 0.00	19,727	\$ 0	
	Implementatio	on Cost:	\$ 74,906	= 26.9 year payback	
	Annual Energy	Savings.	\$ 2,779		

EEM-5	Town of Gr	oton - Munic	ipal Building			
	_					
INPUT DAT						
Surface to be	e insulated:	Roof				
Area:		2,500		sq ft		
Present R va		14.0				
Revised R va		33.0				
Present U fac		0.071		Btuh/sq ft-deg F		
Revised U fa		0.030		Btuh/sq ft-deg F		
Present U x A		179			UA Total present	
Proposed U >	(Area	76		76	UA Total propos	ed
CALCULATI	ONS:	Occupied	Unoccupied	Fuel Data	Heating	Cooling
Heating Setp	oint:	70	70	Туре:	Natural Gas	Electricity
Cooling Setp	oint:	74	77	Units:	therm	kwh
Q internal ga	ins (Btuh):	21,281	4,720	Unit cost:	\$ 0.905	\$ 0.089
3LC (Btuh/de	gree F):	6,970	4,973	BTU/unit	100,000	3,412
Г Balance (°F		66.9	69.1	Efficiency/ COP:		322.4%
		iternal gains / BL	C)	EER:		11.0
		<u> </u>				
	Occupied	Unoccupied	Change in Occupied	Change in Unoccupied	Heating Savings	Cooling
Bin Mid-Pt.	Hours	Hours	Heat Loss	Heat Loss	therm	Savings kwh
(7.5	_	6	7,968	7,968	1	(
(2.5	5) 2	17	7,454	7,454	2	(
2.5	5 5	44	6,940	6,940	4	C
7.5		98	6,426	6,426	9	C
12.5		169	5,912	5,912	15	(
17.5		341	5,398	5,398	29	(
22.5	-	323 384	4,884 4,370	4,884 4,370	28 26	(
32.5		635	3,856	3,856	41	
37.5		636	3,341	3,341	34	(
42.5	5 123	533	2,827	2,827	24	(
47.5	i 199	619	2,313	2,313	24	C
52.5	160	446	1,799	1,799	14	(
57.5		702	1,285	1,285	14	(
62.5		774 448	771	771	10	(
72.5		231	0	257	1	
77.5		176	(360)	(51)	0	
82.5		67	(874)		0	10
87.5	5 21	23	(1,388)	(1,080)	0	5
92.5		0	(1,902)	(1,594)	0	1
97.5		0	(2,416)	(2,108)	0	(
102.5		0	(2,930)		0	(
107.5		0	(3,444)	(3,136)	0	(
	8,760	hours		Energy Savings:	275	20
			D.		\$ 249	\$ 2
		PAYBACK PERIO	<i>.</i>			
		Material & Labor	c			
				Tatal		
	ltem Roof	(\$ / sq ft) \$ 3.00	Quantity	Total		
	Roof	Ş 3.00	2,500	\$ 7,500		
				\$0		
				\$ 0		
	Implantente	n Costi	ć 7 500	- 20 year		
	Implementatio	DIT COST:	\$ 7,500	= 30 year payback		

EEM-6	Town of Groto	on - Municipal I	Building		
	-				
Type & Qty.	_	Due v e e e e			
A	Present	Proposed			
Area:		sq ft total			
Perimeter:	38	38			
Infilt. rate:		5			
R value:	3.0	6.0			
U factor:	0.333	0.167			
U x Area	13	7			
		Present	Proposed	Change	
	Total UA	13	. 7	7	Btuh/deg F
	Infiltration Load	14	2	12	Btuh/deg F
		27	8	19	Btuh/deg F
	DNS:				, 405 !
		Occupied	Unoccupied	Fuel Data	Heating
Heating Setp	oint:	70	70	Type:	Natural Gas
Cooling Setp		78	70	Units:	therm
Q internal ga		21,281	4,720	Unit cost:	\$ 0.905
BLC (Btuh/de		6,970	4,973	BTU/unit	100,000
F Balance (°F		66.9	69.1	Efficiency/ COP:	78.6%
•	•		09.1		78.0%
	Γ Setpoint - (Q inte	fillal gallis / BLC)		EER:	
			Change in	Change in	
Bin Mid-Pt.	Occupied Hours	Unoccupied	Occupied Heat	Unoccupied	Heating Saving
2		Hours	Loss	Heat Loss	therm
(7.5)	0	6	1,447	1,447	C
(2.5)	2	17	1,353	1,353	(
2.5	5	44	1,260	1,260	1
7.5	6	98	1,167	1,167	2
12.5	24	169	1,073	1,073	(3)
17.5	82	341	980	980	
22.5	128	323	887	887	5
<u>27.5</u> 32.5	80 203	384 635	793 700	793 700	7
37.5	158	636	607	607	6
42.5	123	533	513	513	4
47.5	199	619	420	420	Δ
52.5	160	446	327	327	3
57.5	165	702	233	233	(1)
62.5	228	774	140	140	2
67.5	147	448	0	47	(
	8,760	hours		Energy Savings:	50 \$ 45
MPLEMENT	ATION COST & PA	YBACK PERIOD:			ې 4.
		Material & Labor			
	ltem	(\$ / each)	Quantity	Total	
	Garage	\$ 1,000	2	\$ 1,905	
				\$ 0 \$ 0	
				Ū Ç	
	Implementation C Annual Energy Sa		\$ 1,905 \$ 45	= 42.2 year pa	yback

EM-7	Town of Groto	n - Municipal I	Building			
				Type:	Natural Gas	
				Units:	therm	
				Unit cost:	\$ 0.905	/therm
			Неа	t Content of Fuel	100,000	Btu/therm
			Comb	ustion Efficiency:	79%	
DATA:						
		Occupied	Unoccupied			
	T Setpoint:	70	70	degrees F		
	Q internal gains:	21,281	4,720	Btuh		
	BLC:	6,970	4,973	Btuh/degree F		
	T Balance:	66.9	69.1	degrees F		
	T Balance = T Setpo	pint - (Q internal g	ains / BLC)			
Slazing In	formation					
-				Glazi	ng 2	
	Duran i O iliti			Single glazed wi	-	
	Present Conditions					
	Present Area:			288	sq ft	
	U factor:				Btuh/sq ft-deg I	F
	Crack Length:				feet	
	Present Infiltration:			40	cfh	
				Double glazed	casement	
	Proposed Condition	1		windows		
	Proposed Area:			288	sq ft	
	New U factor:				Btuh/sq ft-deg I	, F
	New Crack Length:				feet	
	Proposed Infiltration:			5	cfh	
	Bin Data for Bingh	amton, 40 hrs./w	eek		Average	
	5	•			O.A. Temp	Temp
				Accum	below	Difference
		T Setpoint	T Balance	Hours	T Balance	(T Set- Avg OAT)
	Occupied	70	66.9	1,563	42.4	27.6
	Unoccupied	70	69.1	6,175	43.0	27.0
CALCULAT						
	Conduction Savings					
	Infiltration Savings					irs x Temp Differe
	Energy Cost Saving	s = (Energy Saving	gs / Conversion	Factor) x (Unit co	st / Efficiency)	
		Conduction	Infiltration	Total	Total Annual	Energy
		Savings	Savings	Savings	Fuel Savings	Cost Savings
	Winter	(Btu/year)	(Btu/year)	(Btu/year)	(therm/year)	(\$/year)
	Occupied	6,221,000	1,306,000	7,527,000	96	\$ 87
	Unoccupied	23,997,000	5,039,000	29,036,000	370	\$ 334
	Annual Savings:	30,218,000	6,345,000	36,563,000	465	\$ 421
MPLEME	NTATION COST & PAY	BACK PERIOD:				
		Material & Labor				
Item		\$ / sq. ft.	Quantity	Total		
			0	\$ 0		
		\$ 80	288	\$ 23,040		
		Implementation	Cost:	\$ 23,040	= 54.7 year pa	avback
		Implementation		÷ =0,0 .0		· / · · · ·

EEM-8	Town	of Groton	- Municipal Bu	uilding					
			•						
Input Data	a								
	Fuel Inf	ormation			Type:	Units:	Unit cost:	BTU/unit	Efficiency
			He	ating System	Natural Gas	therm	\$ 0.905	100,000	79%
			I	DHW System	Natural Gas	therm	\$ 0.905	100,000	80%
					Type #1	Type #2			
	Fluid				Hot Water	DHW			
	Pipe Ma	torial							
	Pipe IVia	ateriai			Dull Copper	Dull Copper			
		O.D., inches			1.00	0.75			
		Total Length,	ft		12	8			
	Fluid Te	mperature In	side Pipe, °F (Ts)		160	110			
	Ambier	t Temperatur	e, °F (Ta)		65	65			
	Annual	Operating Ho	urs		1,885	8,760			
		New Insulatio	n Thickness, inches		1.0	1.0			
		Thermal Cond	uctivity - "k" (Btu-in	/hr-sq ft-°F)	0.270	0.250			
Heat Loss	- Bare Pi	ре							
	C factor				1.016	1.016			
	emissiv	ity based on p	ipe material		0.44	0.44			
	Outside	Radius Pipe,	inches (R	i)	0.50	0.38			
	h conve	ction, Btu/hr	- s.f. pipe surface	area -°F	1.45	1.32			
			.f. pipe surface ar		0.57	0.50			
	h total		••		2.02	1.81			
	Pipe are	ea, sq ft/lin ft	of pipe		0.262	0.196			
		Btu/hr-lin ft			50	16			
Heat Loss									
		Radius Insula		ls)	1.50	1.38			
		•	uter area of insula	tion	15.6	6.3			
			/lin ft of pipe		0.8	0.7			
	Q insul,	Btu/hr-lin ft			12.2	4.5			
Avoided E			,						
	-	Loss - mmBt			1.1	1.1			
		ed Loss - mm			0.3	0.3			
	Avoided	d Loss - mmBt	u/year		0.9	0.8			
Annual Fu	iel Consu	mption		existing	14	14			
				proposed	3	4			
		21		Units Saved		10			
		Natural Gas		Fuel Type	Natural Gas				
			\$ 19	\$/year	\$ 10	\$ 9			
Formulao			Ş 19	Şî yeai		Ş 5			
Formulae		F 1002 Funda		l	and 22,17				
Based O			mentals Handboo						
			1 / d) ^ 0.2} x { (1						
			vity x 0.1713 x 10	^ -8 X [(1a + 4	460) ^ 4 - (15	+460) ^ 4]} / (Id - IS)		
	Q bare	= n total x Pip	e Area x (Ts - Ta)						
	Q i = (T	s - Ta) / { [Rs	x (ln (Rs / Ri)] / I	< }					
	Q insul	= Q i x Insul A	rea						
	Total A	voided Consu	nption = (Q bare -	Q insul) x To	tal length of r	pipe x Annual	Operating Ho	urs	
Davis - I -					<u> </u>				
Payback P	eriod:			4					
		Implementa	ion Cost.	\$ 145	= 7.7 years	navhack			

EEM-9	Town of Groton - M	unicipal Build	ling		
INPUT DATA:					
		Present Fuel		Proposed Fuel	
	Fuel:	Natural Gas		Electricity	
	Units:	therm		kwh	
	Fuel Cost:	\$ 0.91	per therm	\$ 0.09	per kwh
	BTU / unit:		Btu per therm	3,412	Btu per kwh
Annual DHW	Consumption:	Present		Proposed	
	Hot Water Usage:	0.5	Gallons/person	0.5	Gallons/person
	Number of persons:	10	(estimate)	10	(estimate)
	Days of Usage:	250	per year	250	per year
	Hours of Usage per Day:	8	hours	8	hours
	Average inlet water Temp	53	degrees F	53	degrees F
	Average hot water temp:	125	degrees F	125	degrees F
Storage Tank	l osses:	Present Tank		Proposed Tank	
Storuge Latik	Tank U factor:		Btu/SF/Hour		Btu/SF/Hour
	Height of Tank:		inches		inches
	Diameter of Tank:		inches		inches
			gallons/tank		gallons/tank
	# of Tanks		Qty.		Qty.
	Hours Tank is Hot:		Hours	8,760	αιγ.
	Water Temperature:		Deg. F.	125	
	Ambient Temperature:		Deg. F.	65	
			0.00		
Recirculation	Losses:	0.0%	of boiler capacity =	0	BTUh
		0	hours/year	8,760	hours/year =
Boiler Jacket &	& Flue Losses:				
	Burner Input	75,000	BTUH	5,631	
	COP:	0.80		0.99	СОР
	Boiler Output Capacity	60,000	BTU output		BTU output
	Jacket & Flue Losses:		of boiler capacity	0.0%	of boiler capacity
	Boiler is Hot:	8,760	hours/year	8,760	hours/year =
CALCULATION	<u>vs:</u>	Drecent		Dranacad	
		Present		Proposed	
	Consumption Energy:		BTU output rqd/yr		BTU output rqd/y
	Tank Energy Losses:	1,418,750		238,847	
	Recirculation Losses:		BTU/year		BTU/year
	Boiler Jacket Losses:		BTU/year		BTU/year
	Output BTU/Year	2,171,871		991,967	
	Annual Fuel Consumption		therm	294	kwh
	Demand	0	billed kW /yr.	1	kW
	Annual Fuel Cost	\$ 25		\$ 26	
	Annual Savings:	27	therm	(\$ 2)	per year
		(294)	kwh		
		(1)	billed kW /yr.		
<u>IMPLEMEN</u> TA	TION COST & PAYBACK P				
Item		Quantity	Matl. & Labor Cost	Total	
		1	\$ 450	\$ 450	
		Implementation	Cost:	\$ 450	= -287.2 year p
		Annual Energy S		(\$ 2)	

BE-1	Town of Groton - Mu	unicipal Buildi	ng			
			Fuel Information	n		
Building Information	Small Office			Heating	Cooling	
Location	Binghamton	Climate Zone 6	Type:	Natural Gas		
Portion of Building HP will serve:	15%		Units:		, kwh	
Building Heating Load (BHL)	180,00	D BTU/h	Unit cost:	\$ 0.905	\$ 0.089	/kwh
Building Cooling Load (BCL)		D BTU/h	BTU/unit		3,412	/kwh
BEFLHheating) Hours	Heating Eff.		\$ 0.00	/kW
BEFLHcooling		6 Hours	CO2		1.16	, lbs/unit
Existing System						
Is baseline heating system electric?		Ν				
Is baseline heating system fossil fuel	l?	Y				
If yes, will it remain in place in the e		N				
Present Heating System	Warm Air Furnace, Gas Fi	ed < 225 kBTU/h				
Present Cooling System	Air-cooled AC w/ other heat	(≥ 65 and < 135 kBT	U/h)			
% of Portion to be served by ASHP tl		100%				
Proposed System		N/				
Does proposed ASHP require supple		Y				
ASHP Type	Central Ducted	(1)				
ASHP Application	Whole	(the ASHP will m	eet all of the hea	iting load)		
Control Type	Integrated/Modulating					
Heating Capacity		BTU/h at 5°F	1.0	HP Sizing R	atio	
Energy Efficiency Ratio	15.0	EERee				
Seasonal Energy Efficiency Ratio	19.0	SEER				
Heating Season Performance Factor	10.0	HSPF				
	C	4.4				
Resulting system to be modeled	Scenaric Central Ducted ASHP w		Modulating co	atrols sized	to 100%	
		_	_	iti ois sizeu	1010%	
Adjusted Efficiency Values	Baseline	Energy Efficient	-			
SEERbaseline	11.7	18.2	EERseason,ee	-0.140		cooling offse
EERbaseline	11.0	15.0	EERee	0.966		cooling slope
COPseason, baseline FElecHeat	1.00	2.58	COPseason,ee	-0.003 0.879		heating offse
EFFbaseline		1.00	FElecHeat, new Fload, cooling	0.879	U	heating slope
FFuelHeat		1.00	Fload, heating			
	1.00	1.00	Fload, heating, Fi	JelHeat	0.69	CF
		1.00	Fload, heating, El			
					Savings	Savings
	Baseline	Energy Efficient	Savings	Units	\$	CO2 Lbs/yr.
Cooling Electric Use (kWh/yr.)	8,720		3,119	kWh		· · ·
Heating Electric Use (kWh/yr.)	(-	(18,224)		1	1
Total Electric Use (kWh/yr.)	8,720		(15,105)		(\$ 1,344)	(17,522
Peak Demand (kW)	8.5			kW	\$0	
Fossil Fuel Energy Use (MMBTU)	204			MMBtu	÷ ö	
Fossil Fuel Energy Use : therm	2,038			therm	\$ 1,844	23,885
Annual Energy Costs	\$ 2,620		\$ 500		\$ 500	6,364
Estimated Project Cost		per ton =	\$ 52,753		year payba	

BE-2	Town of Groton - Mu	nicipal Build	ing			
			Fuel Informati	<u>on</u>		
Building Information	Small Office			Heating	Cooling	
Location	Binghamton	Climate Zone 6	Type:	Natural Gas	Electricity	
Portion of Building HP will serve:	15%		Units:	therm	kwh	
Building Heating Load (BHL)	180,000	BTU/h	Unit cost:	\$ 0.905	\$ 0.089	/kwh
Building Cooling Load (BCL)	135,000	BTU/h	BTU/unit	100,000	3,412	/kwh
BEFLHheating	890	Hours	Heating Eff.	79%	\$ 0.00	/kW
BEFLHcooling	756	Hours	CO2	11.72	1.16	lbs/unit
Existing System						
Is baseline heating system electric?	Ν					
Is baseline heating system fossil fuel?	Y					
Present Heating System	Warm Air Furnace, Gas Fire	ed < 225 kBTU/h				
Present Cooling System	Air-cooled AC w/ other heat (≥ 65 and < 135 kB	TU/h)			
% of Portion to be served by GSHP that	at is presently cooled	100%				
Proposed System						
GSHP Loop Type	Closed Loop	GLHP				
GSHP Compressor Type	Variable-Speed	0.40	Capacity Ratio			
Estimated Pump Power	60 watts per ton					
Pumping Control Strategy	Variable					
Heating Capacity	180,000	BTU	rating condition	n		
Energy Efficiency Ratio Full Load	18.0	EER GLHP,full	77	° EWT		
Energy Efficiency Ratio Part Load	25.0	EER GLHP,par	68	° EWT		
Heating COP Full Load	4.0	COP GLHP,ful	32	° EWT		
Heating COP Part Load	4.5	COP GLHP,pa	41	° EWT		
Adjusted Efficiency Values	Baseline	Energy Efficient	-			
			1			
EERseason,baseline	11.7	20.72	EERseason,ee			
EERpeak,baseline	11.0	18.0	EER GSHP, full			
COPseason, baseline	1.00	3.97	COPseason,ee			
FElecHeat						
EFFbaseline	0.80	0.69	CF			
FFuelHeat	1.00				Card	Coult
	Deceline		Cauda an	مة: مرا ا	Savings	Savings
Cooling Flootnig Llos (134/5 /)	Baseline	Energy Efficient		Units	\$	CO2 Lbs/yr.
Cooling Electric Use (kWh/yr.)	8,720	4,924	3,796			
Heating Electric Use (kWh/yr.)	0	11,830	(11,830)		16 74 -1	10.240
Total Electric Use (kWh/yr.)	8,720	16,754	(8,034)		(\$ 715)	(9,319
Peak Demand (kW)	8.5	5.2		kW	\$ 0	
Fossil Fuel Energy Use (MMBTU)	200	0		MMBtu	64.044	22.450
Fossil Fuel Energy Use : therm	2,002	0 ¢ 1.401		therm	\$ 1,811	23,459
Annual Energy Costs Estimated Project Cost	\$ 2,588	\$ 1,491 per ton =	\$ 1,096 \$ 136,683		\$ 1,096 year paybacl	14,140

Appendix D

Assumptions/Data Used to Develop Energy and Dollar Savings Figures

Building and	Occupancy I	nformation							
Floor Area:	22,000	anuara faat		Avg. # of	Heating	Cooling	% of base e	electricity use	resulting in
Floor Area:	23,000	square feet		occupants	Setpoint	Setpoint	in	ternal heat ga	ains
			days /occupied	10	70	74	days	25%	
		nigh	nts/unoccupied	0	70	77	nights	25%	
			# of computer	10		-			
Interior lighting,	people and oc	cupied levels c	of internal loads	occur for	40 hours per week				
		E	ectricity use at	night is usually	25%	of the usual e	lectricity use d	uring day per	iods
	(This results in	an average dayt	time kW that is	N/A	of the peak m	etered kW)		
Heating System Information									
0,			of bldg. served	COP heat	EER	Heat kBTUH	Heating Fuel	Efficiency	
Primary system:	Non-Condensi	ng Boiler	23%	0.81	11.00	525	Natural Gas	80.7%	Et
Secondary:	Forced Air		77%	0.79	11.00	1,763	Natural Gas	78.7%	Et
	15% of building is air conditioned				ng system have	e economizer?	No		
				Fuel					
Describe the dir	ect outside air	or central ma	e-un air system			Eff.		EER for DOA	s
Describe the di	<u>eet outside dii</u>	or <u>central ma</u>	te up un system	cfm outside air, running					
					hours / week	, 0	heat recovery	efficiency	
Domestic Ho	t Water				nours, neek		nearrecorery	enterery	
Domestic no	t water	Fuel	Efficiency						
DHW system en	ergy type	Natural Gas	80%	Is there	a pump to cir	culate DHW?	No		
Hot Water usage	e is	0.5	gallons per	person	/ day for	10	persons on	250	days/year
Weather & S	chedule Info	rmation:							
Select nearest w	eather station	for bin data:		BINGHAMTON			for TRM:	1: Binghamton	
Base temperatu	re for heating o	legree days:	65	°F. yields	7,180	HDD base65	for TRM:	Auto	Repair
	<i>.</i>						c		

70 °F. yields

Present Schedule for Occupied/Day HVAC setpoints

Base temperature for cooling degree days:

Day of week		Start	End	Hours
Sun	1	12:00 AM	12:00 AM	-
Mon	2	8:00 AM	4:00 PM	8.0
Tue	3	8:00 AM	4:00 PM	8.0
Wed	4	8:00 AM	4:00 PM	8.0
Thu	5	8:00 AM	4:00 PM	8.0
Fri	6	8:00 AM	4:00 PM	8.0
Sat	7	12:00 AM	12:00 AM	-
Binghamton, 40 h	rs./week			40.0
				128.0

Proposed Schedule for Occupied/Day HVAC setpoints

for TRM: AC with Gas Heat

234 CDD base70

Day of week	Start	End	Hours			
1	12:00 AM	12:00 AM	-			
2	8:00 AM	4:00 PM	8.0			
3	8:00 AM	4:00 PM	8.0			
4	8:00 AM	4:00 PM	8.0			
5	8:00 AM	4:00 PM	8.0			
6	8:00 AM	4:00 PM	8.0			
7	7 12:00 AM 12:00 AM					
Binghamton, 40 hrs./week						

ESTIMATE OF BUILDING LOAD COEFFICIENT & TRUE-UP TO BILLED ENERGY USE

Town of Groton - Municipal Building 101 Conger Boulevard Groton, NY 13073

Building Information

Width (typical)	90	feet	Building Floor Area	23,000	sq. ft.
Equivalent Length	256	feet	Roof Area	23,000	sq. ft.
Number of Floors	1.0	floors	Gross Wall Area	9,675	sq. ft.
Avg. Floor to Floor Height		feet per floor	Building Volume	321,993	cubic feet
Roof or Ceiling rise is	0	feet in 12' run			

Estimate of Conductive Heat Loss

Estimate of C	onaactive	Incut L000					
						U x A	% of BLC
<u>Surface</u>			Area	<u>R-value</u>	<u>U Factor</u>	<u>Btuh/deg. F.</u>	w/o ventilation
Roof	n/a		23,000	21.1	0.047	1,092	16%
Walls	47.4%	of GWA	4,587	3.7	0.272	1,247	19%
Glazing 1	6.2%	of GWA	600	2.0	0.500	300	4%
Glazing 2	3.0%	of GWA	288	1.0	1.000	288	4%
Entry Doors	8	3x7 doors	168	3.0	0.333	56	1%
Overhead Do	16	14'x18'	4,032	16.0	0.063	252	4%
Тс	otal Exterio	r Surface Area	32,675	sq.ft.		3,234	48%

ACH	equiv. cfm Btuh/deg. F.	BLC (without ventilation)

		71011	equit: enn	Brann acg. 1.	
Est. Infiltration Rate	Occupied	0.60	3,220	3,478	6,376 Btuh/deg. F. Occupied
Est. Infiltration Rate	Unoccupied	0.30	1,610	1,739	4,973 Btuh/deg. F. Unoccupied
		cfm	Fraction	Btuh/deg. F.	Total BLC with Ventilation
Est. Ventilation Rate	Occupied	1,100	50%	594	6,970 Btuh/deg. F. Occupied

Heat Gain Estimation

Estimated Solar Gain	5% of building heat loss during occupied periods will be met by solar gainskW# PeopleTotal BTUHHours/wk.Occupied 5.510 21,281 40.0							
		kW	# People	Total BTUH	Hours/wk.			
Loads & People	Occupied	5.5	10	21,281	40.0			
	Unoccupied	1.4	0	4,720	128.0			

Heat Loss Study - continued

Town of Grot	•				Fuel Data	Heating	Cooling	_		
101 Conger B	oulevard				Type:	Natural Gas	Electricity	Economizer?		
Groton, NY 1	3073				Units:	therm	kwh	No		
			Current		Unit cost:	\$ 0.905	\$ 0.089			
Heating T Set	point:	Occupied	70	deg. F.	BTU/unit	100,000	3,412			
		Unoccupied	70	deg. F.	Nom. Eff, COP	0.792	3.224	СОР		
Cooling T Set	point:	Occupied	74	deg. F.	Avg. Eff, COP	0.786	3.22	Avg. COP		
U	•	Unoccupied	77	deg. F.	0 /		11.0	Avg. EER		
HVAC Schedu	ıle	Occupied	40	Hrs. per wee	k			of bldg. coole		
		Unoccupied	128	Hrs. per wee		nergy Use				
Q internal gai	ins:	Occupied	21,281	Btuh				cfm		
		Unoccupied	4,720	Btuh		0% heat recov. Eff.				
Q internal gai	inci	Schedule	40	Hrs. per wee	k		Heating 0			
	1115.		4	-	ĸ		0	0		
BLC:		Occupied	6,970	Btuh/deg. F.			0	- 66		
		Unoccupied	4,973	Btuh/deg. F.				eff.		
							0.00	COP cool		
Current		Binghamton,	40 hrs./week				0	hrs/week		
	Occupied	Unoccupied	Occ Net Heat	Unocc Net	Heating Fuel	Cooling		DOAS Heatin		
Bin Mid Pt.				Heat Loss	Heating Fuel	Cooling	DOAS Hours			
	Hours	Hours	Loss BTUH	BTUH	Use therm	Energy kwh		kBtu/yr.		
(7.5)	0	6	518,901	380,681	29	0	0			
(2.5)	2	17	484,050	355,816	89	0	0			
2.5	5	44	449,200	330,951	214	0	0			
7.5	6	98	414,349	306,087	413	0	0			
12.5	24	169	379,499	281,222	721	0	0			
17.5	82	341	344,648	256,358	1,472	0	0			
22.5	128	323	309,798	231,493	1,456	0	0			
27.5	80	384	274,947	206,629	1,290	0	0			
32.5	203	635	240,097	181,764	2,089	0	0			
37.5	158	636	205,247	156,899	1,683	0	0			
42.5	123	533	170,396	132,035	1,162	0	0			
47.5	199	619	135,546	107,170	1,188	0	0			
52.5	160	446	100,695	82,306	672	0	0			
57.5	165	702	65,845	57,441	651	0	0			
62.5	228	774	30,994	32,576	411	0	0			
67.5	147	448	0	7,712	44	0	0			
72.5	147	231	(18,725)	(8,589)	0	65	0			
77.5	126	176	(64,445)	(20,438)	0	161	0			
82.5	81	67	(126,907)	(57,094)	0	194	0			
87.5	21	23	(202,754)	(99,467)	0	90	0			
92.5	3	0	(259,966)	(133,881)	0	11	0			
97.5	0	0	(185,079)	(106,665)	0	0	0			
102.5	0	0	(219,929)	(131,530)	0	0	0			
107.5	0	0	(254,780)	(156,394)	0	0	0			
	8,760	hours			13,585	521	DOAS fuel use			

Cross check Against Historic Consumption											
	Historic	Calculated	Difference								
Present Annual Heating Fuel Use is	1,355 mmBTU	1,359	100% of present fuel use								

Appendix E

Clean Heating and Cooling Technology Overview

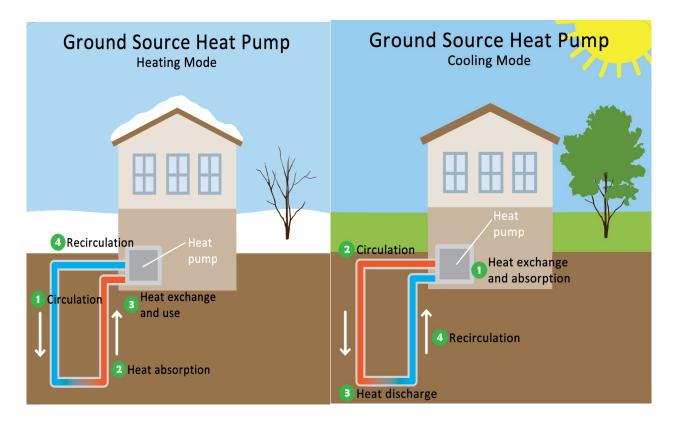
BENEFITS OF CLEAN HEATING AND COOLING (CHC) TECHNOLOGIES

Commercial building owners are becoming increasing aware of how their choice of HVAC system impacts bottom line operating costs and the environment. Most conventional heating systems either burn fuel or convert electricity into heat. CHC technologies, such as heat pumps, are different because they don't generate heat. Instead, they move existing heat energy from outside into your facility, which makes them more efficient since they deliver more heat energy than the electrical energy they consume.

There are many compelling reasons to install a CHC System in commercial buildings.

CHC systems:

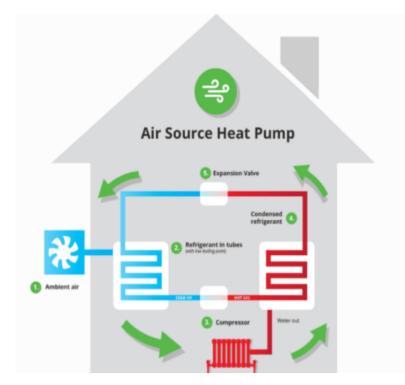
- Can cost less to run than a traditional fossil fuel heating system.
- Integrate well with renewable and resilient building designs
- Offer the highest efficiency and most cost-effective space conditioning for HVAC
- Offer reduced maintenance costs because the exterior equipment is buried underground
- Offers flexible design and installation with many configurations available.
- Provides superior thermal comfort for all seasons.


TYPES OF CLEAN HEATING AND COOLING (CHC) TECHNOLOGIES

What is a Ground Source Heat Pump (GSHP)?

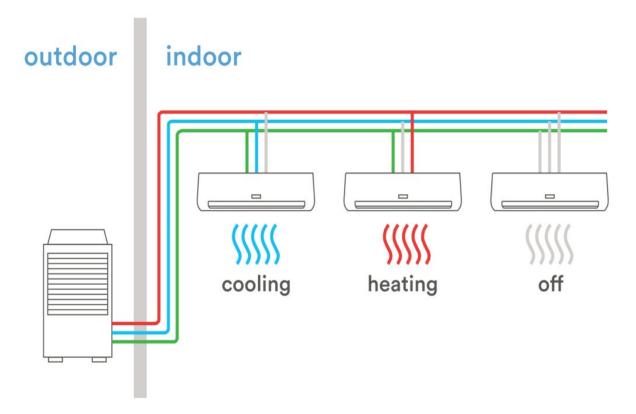
GSHP's are self-contained electrically powered systems that provide heating and cooling more efficiently than other types of conventional HVAC systems. This increase in efficiency is obtained due to the GSHP systems coupling with the earth's relatively stable ground temperature. For example, while the temperature of the of the outside air may vary drastically from summer to winter, the ground temperature remains relatively stable, making it an ideal heat "source" for heating and heat "sink" for cooling.

The GSHP system utilizes an electric vapor compression refrigeration cycle to exchange energy between the building load and a ground coupled loop. When in heating mode, energy is transferred from the low temperature ground loop source to the higher temperature heat sink (the load).


The system reverses during cooling, where the energy is absorbed by the ground loop.

Source: https://www.epa.gov/rhc/geothermal-heating-and-cooling-technologies

What is an Air Source Heat Pump (ASHP)?


An air source heat pump works much like a refrigerator operating in reverse. Outside air is blown over a network of tubes filled with a refrigerant. This warms up the refrigerant, and it turns from a liquid into a gas. This gas passes through a compressor, which increases the pressure. Compression also adds more heat – similar to how the air hose warms up when you top up the air pressure in your tires. The compressed, hot gases pass into a heat exchanger, surrounded by cool air or water. The refrigerant transfers its heat to this cool air or water, making it warm. And this is circulated around your facility to provide heating and hot water. Meanwhile, the refrigerant condenses back into a cool liquid and starts the cycle all over again.

Source: <u>https://www.ways2gogreenblog.com/2017/10/18/a-brief-introduction-to-air-source-heat-pumps/</u>

What is a Variable Refrigerant Flow (VRF)?

VRF systems use heat pumps or heat recovery systems to provide heating and cooling for all indoor and outdoor units without the use of air ducts. With a VRF system, your building will have multiple indoor units utilized by a single outdoor condensing unit, either with a heat pump or heat recovery system. A VRF HVAC system can heat and cool different zones or rooms within a building at the same time. If the appropriate VRF system is selected, building occupants have the ability to customize the temperature settings to their personal preferences. VRF equipment can be used in conjunction with a wide range of heating and cooling products. This means that a VRF system can be scaled to meet the climate control needs.

Source: <u>https://be-exchange.org/tech_primer/tech-primer-variable-refrigerant-flow-vrf-</u> systems/

Appendix F

Energy Savings Summaries

Energy Efficiency Measures			GHG	Electric Savings F				uel Savings	6	\$ Savings & Cost			
EEM #	Measure Status	EEM Category	EEM Description	CO2e Lbs./Yr.	kWh	kW	Electric Cost Savings	Fuel Type	Fuel MMBtu Savings	Fuel Cost Savings	Total Annual Savings	Install Costs	Simple Payback (years)
EEM-1	R	Lighting	Interior Lighting Retrofit	16,630	14,336	7.6	\$ 1,276		0.0	\$0	\$ 1,276	\$ 17,632	13.8
EEM-2	R	Controls	Improve Temperature Control	21,756	0	0.0	\$0	Natural Gas	185.6	\$ 1,680	\$ 1,680	\$ 787	0.5
EEM-3	R	Envelope	Weather-Stripping And Caulking	7,212	0	0.0	\$0	Natural Gas	61.5	\$ 557	\$ 557	\$ 3,072	5.5
EEM-4	R	Envelope	Insulate Building Envelope - Garage	35,995	0	0.0	\$0	Natural Gas	307.1	\$ 2,779	\$ 2,779	\$ 74,906	26.9
EEM-5	R	Envelope	Insulate Building Envelope - Town Office	3,242	20	0.0	\$ 2	Natural Gas	27.5	\$ 249	\$ 250	\$ 7,500	30.0
EEM-6	NR	Envelope	Install Insulated Doors	584	0	0.0	\$0	Natural Gas	5.0	\$ 45	\$ 45	\$ 1,905	42.2
EEM-7	NR	Envelope	Install Double Glazing	5,561	0	0.0	(\$ 8)	Natural Gas	47.4	\$ 429	\$ 421	\$ 23,040	54.7
EEM-8	R	HVAC	Insulate Heating And Domestic Hot Water Pipes	245	0	0.0	\$ 0	Natural Gas	2.1	\$ 19	\$ 19	\$ 145	7.7
EEM-9	NR	DHW	Install A Tankless Water Heater	(22)	(294)	(0.1)	(\$ 26)	Natural Gas	2.7	\$ 25	(\$ 2)	\$ 450	(287.2)
Total of Recommended Measures:				85,079	14,356	7.6	\$ 1,278		583.8	\$ 5,284	\$ 6,561	\$ 104,042	15.9

Building Electrification Measures						Savings & Cost							
EEM #	Measure Status	EEM Category	Building Electrification Measure Descriptions	CO2e Lbs./Yr.	kWh	kW	Electric Cost Savings	Fuel Type	Fuel MMBtu Savings	Fuel Cost Savings	Total Annual Savings	Install Costs	Simple Payback (years)
BE-1	RBE	ASHP	Install Clean Heating System - Air Source Heat Pump	6,364	(15,105)	2.3	(\$ 1,344)	Natural Gas	203.8	\$ 1,844	\$ 500	\$ 52,753	105.5
BE-2	RBE	GSHP	Install Clean Heating System - Ground Source Heat Pump	14,140	(8,034)	3.3	(\$ 715)	Natural Gas	200.2	\$ 1,811	\$ 1,096	\$ 136,683	124.7
	Total of Recommended Measures: 0					0.0	\$ O		0.0	\$ 0	\$ 0	\$ O	